

Unity Game Development
Scripting

Write efficient C# scripts to create modular key game
elements that are usable for any kind of Unity project

Kyle D'Aoust

BIRMINGHAM - MUMBAI

Unity Game Development Scripting

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1151214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-363-1

www.packtpub.com

www.packtpub.com

Credits

Author
Kyle D'Aoust

Reviewers
Marcieb Balisacan

Paulo Barbeiro

Volodymyr Gerasimov

Dan Lingman

Conor O'Kane

Francesco Sapio

Commissioning Editor
Akram Hussain

Acquisition Editor
Sam Wood

Content Development Editor
Parita Khedekar

Technical Editor
Tanvi Bhatt

Copy Editors
Pranjali Chury

Adithi Shetty

Project Coordinator
Rashi Khivansara

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Priya Sane

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Kyle D'Aoust has been programming for about 10 years. In 2004, at the age of
14, he taught himself the C++ language. By the end of high school, he had learned
Visual Basic and JavaScript as well. In college, he majored in game production and
specialized in the Unity engine using C#.

After graduating from college, Kyle started his career with gamifying software.
He is currently working as a Serious Games Developer at Quicken Loans, creating
games used as training material.

I would like to thank my parents for supporting me in my work.

About the Reviewers

Marcieb Balisacan is an independent game developer, a designer, and a
producer working in the Philippines. He has a background in computer science
and multimedia, and he has released several games for mobile devices and social
networks on the Web since 2006. His passion for game development is equaled only
by his passion for music and storytelling, all of which he uses to share his love for the
art of creation. He has recently cofounded a game development studio start-up, Full
Mana Studios (www.fullmana.com), and is the Lead Game Engineer in Synergy88
Studios, where he is leading the design and development of computer games.

I would like to acknowledge my newborn son, Aedan Chord, who
kept me awake during the review of this book and inspired me to
move forward.

Paulo Barbeiro has been involved in digital world development since 1999 as a
web designer. During the last 15 years, he has worked with frontend and backend
web development, mobile apps, games, and electronic arts, and has taught creative
code principles and techniques.

He graduated as a graphic designer, but digital environment development was
always a passion, so the natural move was in the direction of computer science,
specializing in game development and computer graphics. He believes that
there is no border between artistic creation and logical thinking for software
development—both elements must work together.

Being a Unity3D user since version 1, Paulo was thrilled to contribute to this
book as a technical reviewer. He has also contributed to books about Panda3D
by Packt Publishing.

Currently, Paulo resides in São Paulo, Brazil, working as a lead developer for the
TicTaskDo mobile app and in SESC SP, organizing events and seminars about digital
art, code, and interactive environments.

www.fullmana.com

Volodymyr Gerasimov is a game developer living in Vinnitsya, Ukraine. For the
last 5 years, he has studied game design and scripting and applied this to his work as
a level designer, producer, and game developer.

Volodymyr graduated from The Art Institute of Vancouver with a diploma in
Game Art & Design, and he worked for companies such as Holymountain Games,
Best Way, and Gameloft. Currently, he works as an independent game developer
on a title for mobile platforms.

He enjoys learning new skills and sharing them with his friends, peers, and the rest
of the world by teaching game design and co-authoring books such as Unity 3.x
Scripting, Packt Publishing.

I would like to thank my mentors and peers for keeping up with my
overachieving attitude and giving me the energy to stay hungry and
foolish in my pursuit of success.

Dan Lingman is currently a Professor of Game Development at Algonquin College
in Ottawa, Canada. He became involved in game development in 1981 when he
worked on Commodore PET. Building software, especially games, has been his
passion for over 30 years. He's worked on all types of software on various platforms
for far too many companies to list.

Most recently, he's contributed code to the award-nominated games, Schrödinger's
Cat and Raiders of the Lost Quark. Right now, Dan's focused on creating new methods
for procedural dungeon generation and adaptive AIs in Unity 5.0.

Conor O'Kane is a game developer and teacher from Dublin. He is the director
of Io Normal, a game development studio based in Melbourne. He lectures at RMIT
University in courses covering game design, character modeling and rigging, rapid
prototyping, and mobile game development.

Conor lives with his wife and two children in Melbourne. When he is not busy
creating video games, he enjoys playing the Irish flute.

Francesco Sapio is an Italian student of Computer Science and Control
Engineering with an excellent academic record. He is close to graduating.
In the near future, he'll start pursuing a Master of Science degree in Engineering
in Artificial Intelligence and Robotics, following his passion for computer science
that he has been cultivating since he was 3 years old—when he held his first
Mac in his hands, an experience that totally changed his life.

In recent times, he has developed a hotel management system and built websites
for hotels with booking engines integrated with the major OTAs portals. Besides this,
he is a Unity3D expert and a skilled game designer, as well as an experienced user
of the major graphic programs. For several years, he worked as an actor and as a
dancer—he was a guest of honor at the Brancaccio theatre in Rome.

He is also a musician and composer, and mostly composes soundtracks for short
films and video games. In the recent past, he has helped a lot of young kids to start
playing piano. In addition, he is a very active person. He is an animator and gives
private lessons in mathematics and music for high school and university students.

Furthermore, he loves maths, philosophy, logic, and puzzle solving, but most
of all, creating video games. Owing to his passion for game designing and
programming, his dream—with a bit of pride—is to become a famous and
successful game designer.

I'm deeply grateful to my parents for their infinite patience and for
raising and supporting me. I would like to specially thank my father;
without him, I wouldn't be here today. Moreover, I'm thankful to the
rest of my family and to my friends, in particular my grandparents,
since they always encouraged me to do better in my life with the
Latin expressions "Ad Maiora" and "Per aspera ad astra".
Besides this, I would like to thank the team at Packt Publishing,
especially my old project coordinator for introducing me to this
world and my current project coordinator for her kindness.
Finally, huge thanks to my fiancée; I'm grateful to have your support
with me in whatever I do. Love you.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Interactive Input 5

Picking the controls 5
Mapping the needed controls 6
Checking the input manager 6
Checking the Xbox 360 Controller inputs 7
Adding additional controller inputs 7
Adding a start button and trigger inputs 8
Adding directional pad inputs 8
Adding PC control inputs 8

Housing our control script 9
Creating and naming the script 9
Formatting the script 9

Creating the device detector 9
Adding the variables needed 9
Creating the detection function 10
Creating the identifier function 10

Let's get set and show them 11
Adding variables for each control 11
Adding a function to display the variables 12

Let's switch! 13
Creating control profiles 14
Adding a profile switching function 14
Adding the GUI interaction function 14

Customization is key 15
Swapping control schemes 15
Adding a control switch button to the GUI 19
Cycling control inputs 19

Table of Contents

[ii]

Adding the controls pop up to the GUI 22
Resetting the controls 24
Adding the Reset function 24
Adding the Reset input 24

Playtesting 25
Summary 26

Chapter 2: GUI Time 27
A traditional 2D UI 27

Setting up our scene 28
Housing our 2D UI 28
Creating GUI buttons 28
Creating a health bar 29
Level counter 30
Creating an experience counter 31

Housing our 3D UI 32
Creating a 3D health bar 33
Creating 3D damage reports 34
The new Update function 35
Completing the damage reports 36
Creating 3D name tags 37

Summary 38
Chapter 3: Expandable Item Classes 39

The self item class 39
Adding our variables 40
Buff or debuff stats 40

The health changer 41
The armor changer 41
The item activator 41

The melee item class 42
Adding our variables 42
Buff or debuff stats 43

The health changer 43
Let's interact with the environment 43
Detecting triggers 44

The projectile item class 45
Adding our variables 45

Buff or debuff stats 46
The health changer 46
Adding movement 46
Detecting triggers 47

Playtesting 49
Summary 49

Table of Contents

[iii]

Chapter 4: Inventory 51
Features of an inventory 51

Limits of the inventory 52
Accessing the inventory 52
Organizing an inventory 53

Item count modifications 53
Item bartering 53
Dropping and picking up items 54
Destroying and using items 54

Displaying the inventory 54
Creating the inventory script 54

Creating and naming the script 54
Adding the necessary variables 55
Initializing our inventory 56
Creating the initializer 56

Adding items 57
Let's figure this out 57
Creating the adding function 57

Removing items 59
Let's figure this out 59
Creating the removing function 59

Setting the quick-select items 61
Setting the quick-select items quickly 61
Let's display the inventory 61
Using our custom inputs 62
Displaying the GUI 62
Running the GUI 62

Playtesting 64
Creating a test scene 64
Let's add an item 66
Let's remove some items 67

Other things to try out 68
Summary 68

Chapter 5: Enemy and Friendly AIs 69
AI techniques 69

Finite state machines 70
The behavior tree form of the AI system 71

Combining the techniques 72
Let's start scripting! 72

Internal and external actions 74
External actions 74

Table of Contents

[iv]

Internal actions 74
Scripting the actions 75

Pathfinding 79
Creating paths using the waypoint system 80
Unity's NavMesh system 80
Setting up the environment 80

Creating the NavMesh 82
Adding our variables 85
Scripting the navigation functions 85

Character animations 87
Importing the model mesh 88
Scripting the animations 90

Putting it all together 90
Final coding touches 91
Filling out the inspector 91

Playtesting 93
Summary 93

Chapter 6: Keeping Score 95
Prototype stats 95

Assigning the stats to the player 96
The stat tracker 97

Setting the stats 97
Resetting the stats 98
Resetting all of our prefs 99
Saving all of our prefs 100
Setting a specific pref 100
Resetting a specific pref 101
Showing our stats on the screen 102

The achievement system 104
Prototyping the achievements 104
Adding the required achievement variables 104
Resetting the achievements 105

Achievement trackers 105
Tracking the kills 106
Tracking the gold total 107
Tracking the gold spent 108
Tracking the player's level 109
Tracking the rounds won 110
Tracking the time played 111

Let's check the achievements 112
Checking a specific achievement 112

Table of Contents

[v]

Checking all of the achievements 113
Displaying the achievements on screen 113

Adding the GUI functions 113
Playtesting 118
Summary 118

Chapter 7: Creating Save and Load Systems 119
Saving data with flat files 120

Adding the required variables 120
Time to save our file 120

Deleting our flat files 122
Loading our flat files 122

Time to load our file 122
The XML save system 123

Creating our XML files 123
Saving data with XML 125

Adding the required variables 125
Saving the player data 126
Saving the enemy data 127

Loading data with XML 130
Loading the player data 130
Loading the enemy data 132

Creating the SaveHandler script 134
The checkpoint system 134
The save anywhere-anytime system 135

Playtesting 135
Summary 138

Chapter 8: Aural Integration 139
Background music 139

Creating a random system 139
Adding a playlist system 140
Implementing the audio systems 141

Atmospheric sounds 143
Creating the script and variables 143
Initializing the variables 143
Playing the atmospheric sounds 144

Sound effects 145
Creating the script and variables 145

Playtesting 146
Summary 148

Table of Contents

[vi]

Chapter 9: Game Settings 149
Figuring out what to optimize 149
Making video configurations 150

Setting the values 150
Toggling the shadows 150
Setting the field of view 151
Setting the resolution 152
Toggling the anti-aliasing property 153
Setting vsync 153
Changing the quality settings 154
Loading the settings 154

Making audio configurations 155
Setting the values 155
Configuring the volumes 155
Setting the speaker mode 156

Creating the settings menu 157
Preparing the code 157
Creating the GUI 158
Saving all the values 160
Loading all the values 161

Playtesting 162
Summary 163

Chapter 10: Putting It All Together 165
Creating levels 165

The main menu 166
The playable level 167

Creating player interactions 168
Shooting and pausing 168
Collecting potions 169

Adding all the sounds 170
Playing the background music 170
Adding the atmospheric sounds 170

Implementing the GUI 170
Adding the script 170

Table of Contents

[vii]

Tracking stats 171
Adding the script 171

Saving and loading 172
Adding the script 172

Final preparations 172
Adding win conditions 172
Affecting the AI 173
Finalizing the items 173
Creating more levels 174

Playtesting 174
Summary 174

Index 175

Preface
This book will cover many helpful topics that you can utilize when you create your
own games. As a game developer and scripter, you'll end up writing a lot of code
that you would not want to write again; this book will help to solve that. You will
learn how to make gameplay elements modular so that they can be used again in
other projects as well. This book will take what you might already know about
gameplay scripting in Unity to the next level.

What this book covers
Chapter 1, Interactive Input, gives an in-depth look at how to create controls for both
the Xbox 360 Controller and mouse/keyboard inputs. Along with creating those
inputs, you'll also create customizable control profiles that the player can use to
play your game the way they want to.

Chapter 2, GUI Time, will help you create both 2D and 3D GUI elements. This covers
health bars, player data, hovering 3D health bars, 3D damage reports, enemy names,
and so on.

Chapter 3, Expandable Item Classes, will teach you how to create in-game item classes
for self, melee, and projectile items. Then, you'll create a classification system for
these items to determine what they do.

Chapter 4, Inventory, will teach you a way to create an inventory system for your
game. In this system, there'll be common inventory elements created such as adding
items, removing items, and creating quick-select items. Finally, you'll also create a
way to show the inventory on the GUI.

Chapter 5, Enemy and Friendly AIs, will demonstrate how to create a dynamic AI.
It will cover what a finite state machine is and also what a behavior tree is.
This AI system will handle behaviors, actions, animations, pathfinding,
and also a waypoint system.

Preface

[2]

Chapter 6, Keeping Score, covers how to create, track, and save stats for the player.
You'll also create a system for achievements for those stats as well.

Chapter 7, Creating Save and Load Systems, covers how to create systems to save and
load from a flat file as well as an XML file. Then, you'll take these systems and
implement them on a checkpoint-based save system and an anywhere/anytime
saving system.

Chapter 8, Aural Integration, covers the creation of systems that will handle
background music, atmospheric sounds, and sound effects. These systems
are a playlist system, a randomized system, and an event-driven system.

Chapter 9, Game Settings, covers how to create customizable configurations for
audio and video settings. You'll create the ability to save and load these settings
by using PlayerPrefs.

Chapter 10, Putting It All Together, will put almost everything you've learned from the
previous chapters into a small game. By taking elements from the previous chapters,
you'll create a short First Person Action RPG.

What you need for this book
For this book, all that you'll need is Unity3D to write all of the scripts needed and
Notepad++ to create XML files. While you may be able to create XML files in other
programs, I use Notepad++ because it's easy to use and is a nice program to have as
a programmer.

Who this book is for
This book can be used by someone who already has some programming or scripting
knowledge and wants to get into game development using Unity3D. If you've
already been using Unity3D for some time, this book may be of use to you as
well as it has a theme to create modular gameplay elements.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Preface

[3]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The reset function will use our SetDefaultValues() function as well as reset a
couple of our other variables."

A block of code is set as follows:

void Reset()
{
 SetDefaultValues();
 ShowPopup = false;
 PreviousKey = KeyCode.None;
}

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Open up the Axes dropdown by clicking on the arrow next to it."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[4]

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Interactive Input
Before we start creating our game, it is a good idea to figure out our controls.
We'll create a script that will hold our inputs, and create control profiles for both the
keyboard/mouse as well as the Xbox 360 Controller. Then, we'll add functionalities
to be able to switch between the profiles and customize them as well. Control
configurations like these are a key element to games, especially PC games.

In this chapter, we will cover the following topics:

• Creating controls for the Xbox 360 Controller
• Creating controls for a keyboard
• Writing a function to detect whether our controller device is plugged in
• Customizing our controls
• Letting players switch controls
• Switching controls with Graphical User Interface (GUI) buttons
• Resetting controls back to factory settings

Picking the controls
Before we start creating our game, we should decide how the player will play the
game. The controls are one of the most key parts of a game.

Interactive Input

[6]

Mapping the needed controls
For the game that we will create, we will need several controls. Some are already
included in the input manager within Unity, while some are not. The following
table shows what default controls we will be using, and what buttons we'll use
for them:

Action Keyboard/mouse Xbox 360 Controller
Movement WASD keys Left thumbstick
Rotate camera Mouse Right thumbstick

Item bar buttons 1234 keys Directional pad

Inventory The I key The A button

Pause game The Esc key The Start button

Attack / use an item The left mouse button The right trigger

Aim The right mouse button The left trigger

Checking the input manager
In the following screenshot, you can see that there are default inputs already
implemented, which we can use for the movement, rotate camera, attack/use
item, and aim actions:

Chapter 1

[7]

As you can see, we still need to add inputs for the inventory, pause game, and item
bar buttons. We will also need to make sure that the inputs we enter will support
inputs from the Xbox 360 Controller.

Checking the Xbox 360 Controller inputs
Before we add stuff into the input manager, we should take a look at what the inputs
are on the Xbox 360 Controller. This will help us integrate the controller inputs in the
input manager, as well as give us an insight on how to code the controller inputs.

Adding additional controller inputs
To get started, access your input manager by navigating to the Edit menu, hovering
over Project Settings, and clicking on Input. Open up the Axes dropdown by clicking
on the arrow next to it and change the number in the Size parameter to be a value
higher. This will add another input at the bottom of the list, which we can use for
one of our types of inputs.

By default, by creating a new type of input, the input manager duplicates the
bottom input. So open it and we'll make our changes. Follow these steps to
create our new input:

1. Change the value of the Name parameter to A_360.
2. Change the value of the Positive Button parameter to joystick button 0.

Interactive Input

[8]

Adding a start button and trigger inputs
As you can see, it's fairly easy to add an Xbox 360 input in the input manager. You
can follow the same steps to add the start button; just change the value of the Name
parameter to Start_360 and the value of the positive button to joystick button 7.
For the two triggers, you will need to follow slightly different steps:

1. Change the value of the Name parameter to Triggers_360.
2. Change the value of the Sensitivity parameter to 0.001.
3. Check the Invert parameter.
4. Change the value of the Type parameter to Joystick Axis.
5. Change the value of the Axis parameter to 3rd Axis (Joysticks

and Scrollwheel).

Adding directional pad inputs
For the directional pad, we'll need to make the horizontal buttons and vertical
buttons separately, but these will both be similar to how we set up the triggers.
First, we will create the horizontal directional pad input:

1. Change the value of the Name parameter to HorizDpad_360.
2. Change the value of the Sensitivity parameter to 1.
3. Change the value of the Type parameter to Joystick Axis.
4. Change the value of the Axis parameter to 6th Axis (Joysticks).

For the vertical directional pad input, you can follow the exact same steps as we
did for the horizontal directional pad input; just change the value of Name to
VertDpad_360 and change the value of Axis to 7th Axis (Joysticks). This
completes the Xbox 360 Controller inputs; all that's left are the PC inputs.

Adding PC control inputs
Most of our PC control inputs are already integrated into the input manager; all that
is left are the number keys, I key, and Esc key.

You can actually follow the same steps as at the beginning of this chapter, when
we added the Xbox 360 buttons. For the number keys you'll want to change each of
their names to num1, num2, num3, and num4. As for their positive button parameters,
change their names to 1, 2, 3, and 4, accordingly.

Chapter 1

[9]

The I key name will be I_Key and its positive button parameter will be i. For the
Esc key, we will want the Name parameter to be Esc_Key and its positive button
parameter will be escape.

Housing our control script
Now that we have our control inputs set up, we'll set up our script that will house all
our control-based scripting.

Creating and naming the script
Create a new script either by right-clicking on Project Window, hovering over the
Create tab, and clicking on the C# script, or by navigating through the Assets menu
and creating the new C# script this way. Once you have done this, rename the script
ControlConfig.

Formatting the script
After you have created and named the script, open it. Ensure that the class name,
ControlConfig, is the same as the filename. You'll see that Unity has created the
start and update functions for use already. You should delete both of these functions,
which will leave you with an open and empty class.

Creating the device detector
The first function we'll create is one that will detect whether we actually have a
gamepad plugged in. Unity inherently gives us a way to make this very easy.

Adding the variables needed
First, we'll add variables that we'll use in the detection and identification functions.
Add these to the top of your script, just after the class declaration:

bool isControllerConnected = false;
public string Controller = "";

This Boolean will be used in later functions to determine whether there is a gamepad
connected. The string will be used to hold the name of the gamepad connected.

Interactive Input

[10]

Creating the detection function
Our next step is to add the DetectController function. This will use the Boolean we
created earlier and check whether there is a gamepad connected. Add the following
code to your script:

void DetectController()
{
 try
 {
 if(Input.GetJoystickNames()[0] != null)
 {
 isControllerConnected = true;
 IdentifyController();
 }
 }
 catch
 {
 isControllerConnected = false;
 }
}

This function uses the GetJoystickNames function of the input, which gets
and returns an array of strings, which consists of the names of the connected
gamepads. We use this to set our Boolean to true or false; true meaning there's a
device connected and false meaning that the game couldn't detect a device. The
reason we use a try-catch expression is because if there is no gamepad connected
Input.GetJoystickNames() will give you an IndexOutOfRangeException error.

Creating the identifier function
Our last step in creating the device detector will be to add the ability to
identify the gamepad connected. Add this function to the script, just below
the DetectController function:

void IdentifyController()
{
 Controller = Input.GetJoystickNames()[0];
}

As you can see, we are assigning the name of the gamepad connected to our
Controller variable. To use this function, call it within the DetectController
function, in the if statement, where we set isControllerConnected to true.

Chapter 1

[11]

Let's get set and show them
The next step in our Control script is to set up our controls to be able to customize
what they do, and display what each control does.

Adding variables for each control
At the top of your script, after your other variables, add these new variables:

public string PC_Move, PC_Rotate, PC_Item1, PC_Item2, PC_Item3, PC_
Item4, PC_Inv, PC_Pause, PC_AttackUse, PC_Aim;
public string Xbox_Move, Xbox_Rotate, Xbox_Item1, Xbox_Item2, Xbox_
Item3, Xbox_Item4, Xbox_Inv, Xbox_Pause, Xbox_AttackUse, Xbox_Aim;

We will use these variables to display our controls on the screen. Later, we'll use
them for customization as well. Add this code to assign the default values to our
new variables:

void SetDefaultValues()
{
 if(!isControllerConnected)
 {
 PC_Move = "WASD";
 PC_Rotate = "Mouse";
 PC_Item1 = "1";
 PC_Item2 = "2";
 PC_Item3 = "3";
 PC_Item4 = "4";
 PC_Inv = "I";
 PC_Pause = "Escape";
 PC_AttackUse = "Left Mouse Button";
 PC_Aim = "Right Mouse Button";
 }
 else
 {
 PC_Move = "WASD";
 PC_Rotate = "Mouse";
 PC_Item1 = "1";
 PC_Item2 = "2";
 PC_Item3 = "3";
 PC_Item4 = "4";
 PC_Inv = "I";
 PC_Pause = "Escape";
 PC_AttackUse = "Left Mouse Button";
 PC_Aim = "Right Mouse Button";

Interactive Input

[12]

 Xbox_Move = "Left Thumbstick";
 Xbox_Rotate = "Right Thumbstick";
 Xbox_Item1 = "D-Pad Up";
 Xbox_Item2 = "D-Pad Down";
 Xbox_Item3 = "D-Pad Left";
 Xbox_Item4 = "D-Pad Right";
 Xbox_Inv = "A Button";
 Xbox_Pause = "Start Button";
 Xbox_AttackUse = "Right Trigger";
 Xbox_Aim = "Left Trigger";
 }
}

We will set these variables in a function because later we will use this function
again to reset the controls if they are customized. The function uses our
isControllerConnected variable to determine whether a gamepad is
plugged in or not, and then assigns the appropriate data.

Adding a function to display the variables
Next, we will use the OnGUI function to display our controls onto the screen. We will
create a menu that will show each action and their controls for a PC and Xbox 360
Controller, very similar to the table shown at the beginning of this chapter. Add this
code to the bottom of your script:

void OnGUI()
{
 GUI.BeginGroup(new Rect(Screen.width/2 - 300, Screen.height / 2 -
300, 600, 400));
 GUI.Box(new Rect(0,0,600,400), "Controls");
 GUI.Label(new Rect(205, 40, 20, 20), "PC");
 GUI.Label(new Rect(340, 40, 125, 20), "Xbox 360 Controller");

 GUI.Label(new Rect(25, 75, 125, 20), "Movement: ");
 GUI.Button(new Rect(150, 75, 135, 20), PC_Move);
 GUI.Button(new Rect(325, 75, 135, 20), Xbox_Move);

 GUI.Label(new Rect(25, 100, 125, 20), "Rotation: ");
 GUI.Button(new Rect(150, 100, 135, 20), PC_Rotate);
 GUI.Button(new Rect(325, 100, 135, 20), Xbox_Rotate);

 GUI.Label(new Rect(25, 125, 125, 20), "Item 1: ");
 GUI.Button(new Rect(150, 125, 135, 20), PC_Item1);
 GUI.Button(new Rect(325, 125, 135, 20), Xbox_Item1);

Chapter 1

[13]

 GUI.Label(new Rect(25, 150, 125, 20), "Item 2: ");
 GUI.Button(new Rect(150, 150, 135, 20), PC_Item2);
 GUI.Button(new Rect(325, 150, 135, 20), Xbox_Item2);

 GUI.Label(new Rect(25, 175, 125, 20), "Item 3: ");
 GUI.Button(new Rect(150, 175, 135, 20), PC_Item3);
 GUI.Button(new Rect(325, 175, 135, 20), Xbox_Item3);

 GUI.Label(new Rect(25, 200, 125, 20), "Item 4: ");
 GUI.Button(new Rect(150, 200, 135, 20), PC_Item4);
 GUI.Button(new Rect(325, 200, 135, 20), Xbox_Item4);

 GUI.Label(new Rect(25, 225, 125, 20), "Inventory: ");
 GUI.Button(new Rect(150, 225, 135, 20), PC_Inv);
 GUI.Button(new Rect(325, 225, 135, 20), Xbox_Inv);

 GUI.Label(new Rect(25, 250, 125, 20), "Pause Game: ");
 GUI.Button(new Rect(150, 250, 135, 20), PC_Pause);
 GUI.Button(new Rect(325, 250, 135, 20), Xbox_Pause);

 GUI.Label(new Rect(25, 275, 125, 20), "Attack/Use: ");
 GUI.Button(new Rect(150, 275, 135, 20), PC_AttackUse);
 GUI.Button(new Rect(325, 275, 135, 20), Xbox_AttackUse);

 GUI.Label(new Rect(25, 300, 125, 20), "Aim: ");
 GUI.Button(new Rect(150, 300, 135, 20), PC_Aim);
 GUI.Button(new Rect(325, 300, 135, 20), Xbox_Aim);
 GUI.EndGroup();
}

The preceding code is fairly self-explanatory; we use GUI labels to show what
actions the player can do, then use the GUI buttons to show what inputs the actions
are mapped to. Later, we'll use these buttons as a way to customize our controls.

Let's switch!
Now, we'll create a way for the player to switch between PC and Xbox
360 Controller controls.

Interactive Input

[14]

Creating control profiles
To create our profiles, we'll need to add a new variable. Add the following enum to
the top of our script, before the class declaration:

public enum ControlProfile { PC, Controller };

Add it to your variables as well, like this:

public ControlProfile cProfile;

Finally, go to the DetectController() function. Add this line of code before the line
of code where you call the IdentifyController() function in the if statement:

cProfile = ControlProfile.Controller;

After this, add an else statement to the if statement with another line of code
after it:

else
 cProfile = ControlProfile.PC;

We are setting our enum variable in the DetectController() function to give us
a default control profile. This is a fast and effective way to give our player the best
control profile possible.

Adding a profile switching function
Next, we'll add a function that we can call to manually switch the control profile.
Add this function to our code:

void SwitchProfile (ControlProfile Switcher)
{
 cProfile = Switcher;
}

We can call this function later to let the player choose between using the
keyboard/mouse or the Xbox 360 Controller.

Adding the GUI interaction function
Now, we'll add a button to the bottom right of our controls page to let the player
pick between the keyboard/mouse and Xbox 360 Controller. Add this code to your
onGUI() function, just before the line where we end the group:

GUI.Label(new Rect(450, 345, 125, 20), "Current Controls");
if(GUI.Button(new Rect(425, 370, 135, 20), cProfile.ToString()))

Chapter 1

[15]

{
 if(cProfile == ControlProfile.Controller)
 SwitchProfile(ControlProfile.PC);
 else
 SwitchProfile(ControlProfile.Controller);
}

The text on the button will display which current control profile is being used.
When the player clicks on the button, it will switch the control profile.

Customization is key
It's time to customize our controls! We'll go over a couple of ways to add customization
to our controls. Unity doesn't allow us to edit the input properties while in-game,
so we will create a couple of ways to change the controls ourselves. In our game,
we will utilize both these ways.

Swapping control schemes
Our first method will be to switch between preset control schemes. To start off,
we'll add a bunch of variables that we will use for our controls:

string ControlScheme;
public KeyCode pcItem1, pcItem2, pcItem3, pcItem4, pcInv, pcPause,
pcAttackUse, pcAim, xInv, xPause;

Since we can't modify the input properties, some of our controls will not be
customized, such as movement, camera rotation, Xbox 360 Controller attack/use,
and Xbox 360 Controller item switching. Next, we will need to set some default
values to these variables; we'll modify our SetDefaultValues() function to look
like this:

void SetDefaultValues()
{
 ControlScheme = "Scheme A";
 if(!isControllerConnected)
 {
 PC_Move = "WASD";
 PC_Rotate = "Mouse";
 PC_Item1 = "1";
 PC_Item2 = "2";
 PC_Item3 = "3";
 PC_Item4 = "4";
 PC_Inv = "I";

Interactive Input

[16]

 PC_Pause = "Escape";
 PC_AttackUse = "Left Mouse Button";
 PC_Aim = "Right Mouse Button";

 pcItem1 = KeyCode.Alpha1;
 pcItem2 = KeyCode.Alpha2;
 pcItem3 = KeyCode.Alpha3;
 pcItem4 = KeyCode.Alpha4;
 pcInv = KeyCode.I;
 pcPause = KeyCode.Escape;
 pcAttackUse = KeyCode.Mouse0;
 pcAim = KeyCode.Mouse1;
 }
 else
 {
 PC_Move = "WASD";
 PC_Rotate = "Mouse";
 PC_Item1 = "1";
 PC_Item2 = "2";
 PC_Item3 = "3";
 PC_Item4 = "4";
 PC_Inv = "I";
 PC_Pause = "Escape";
 PC_AttackUse = "Left Mouse Button";
 PC_Aim = "Right Mouse Button";
 Xbox_Move = "Left Thumbstick";
 Xbox_Rotate = "Right Thumbstick";
 Xbox_Item1 = "D-Pad Up";
 Xbox_Item2 = "D-Pad Down";
 Xbox_Item3 = "D-Pad Left";
 Xbox_Item4 = "D-Pad Right";
 Xbox_Inv = "A Button";
 Xbox_Pause = "Start Button";
 Xbox_AttackUse = "Right Trigger";
 Xbox_Aim = "Left Trigger";

 pcItem1 = KeyCode.Alpha1;
 pcItem2 = KeyCode.Alpha2;
 pcItem3 = KeyCode.Alpha3;
 pcItem4 = KeyCode.Alpha4;
 pcInv = KeyCode.I;
 pcPause = KeyCode.Escape;
 pcAttackUse = KeyCode.Mouse0;
 pcAim = KeyCode.Mouse1;

Chapter 1

[17]

 xInv = KeyCode.I;
 xPause = KeyCode.Escape;
 }
 }

Next, we will add a function to our script that will allow the player to switch between
control schemes:

void SwitchControlScheme(string Scheme)
{
 switch(Scheme)
 {
 case "Scheme A":
 SetDefaultValues();
 break;
 case "Scheme B":
 if(!isControllerConnected)
 {
 PC_Move = "WASD";
 PC_Rotate = "Mouse";
 PC_Item1 = "Numpad 1";
 PC_Item2 = "Numpad 2";
 PC_Item3 = "Numpad 3";
 PC_Item4 = "Numpad 4";
 PC_Inv = "Numpad +";
 PC_Pause = "Enter";
 PC_AttackUse = "Right Mouse Button";
 PC_Aim = "Left Mouse Button";

 pcItem1 = KeyCode.Keypad1;
 pcItem2 = KeyCode.Keypad2;
 pcItem3 = KeyCode.Keypad3;
 pcItem4 = KeyCode.Keypad4;
 pcInv = KeyCode.KeypadPlus;
 pcPause = KeyCode.Return;
 pcAttackUse = KeyCode.Mouse1;
 pcAim = KeyCode.Mouse0;
 }
 else
 {
 PC_Move = "WASD";
 PC_Rotate = "Mouse";
 PC_Item1 = "Numpad 1";
 PC_Item2 = "Numpad 2";
 PC_Item3 = "Numpad 3";

Interactive Input

[18]

 PC_Item4 = "Numpad 4";
 PC_Inv = "Numpad +";
 PC_Pause = "Enter";
 PC_AttackUse = "Right Mouse Button";
 PC_Aim = "Left Mouse Button";
 Xbox_Move = "Left Thumbstick";
 Xbox_Rotate = "Right Thumbstick";
 Xbox_Item1 = "D-Pad Up";
 Xbox_Item2 = "D-Pad Down";
 Xbox_Item3 = "D-Pad Left";
 Xbox_Item4 = "D-Pad Right";
 Xbox_Inv = "B Button";
 Xbox_Pause = "Back Button";
 Xbox_AttackUse = "Right Trigger";
 Xbox_Aim = "Left Trigger";

 pcItem1 = KeyCode.Keypad1;
 pcItem2 = KeyCode.Keypad2;
 pcItem3 = KeyCode.Keypad3;
 pcItem4 = KeyCode.Keypad4;
 pcInv = KeyCode.KeypadPlus;
 pcPause = KeyCode.Return;
 pcAttackUse = KeyCode.Mouse1;
 pcAim = KeyCode.Mouse0;
 xInv = KeyCode.JoystickButton1;
 xPause = KeyCode.JoystickButton6;
 }
 break;
 }
}

As you can see, this function is very similar to our SetDefaultValues() function;
it acts the same way. SwitchControlScheme() takes a string that determines which
control scheme to use and then assigns the appropriate data. The first scheme is
the default control scheme, while the other one is a new scheme. The new scheme
changes the following:

• Item keys are now on the keypad
• Inventory buttons are now the + key and B key
• Attack/use inputs are switched on the mouse
• Pause has been changed to the Enter key and the Backspace key

Chapter 1

[19]

Adding a control switch button to the GUI
Lastly, we'll need to add a GUI button to our OnGUI function to allow the player to
switch control schemes. Add the following before the line that ends the group:

GUI.Label(new Rect(15, 345, 125, 20), "Current Control Scheme");
if(GUI.Button(new Rect(25, 370, 135, 20), ControlScheme))
{
 if(ControlScheme == "Scheme A")
 {
 SwitchControlScheme("B");
 ControlScheme = "Scheme B";
 }
 else
 {
 SwitchControlScheme("A");
 ControlScheme = "Scheme A";
 }
}

This button, when clicked, will call the SwitchControlScheme() function and pass it
a letter determining the control scheme being used.

Cycling control inputs
Our next method of customization will let the player click on one of the GUI buttons
in our controls, and pick another control to switch it. To start off, we'll add variables
that we'll use to hold the original values of our controls. The last two variables will
be used to allow us to customize our controls:

private KeyCode orig_pcItem1, orig_pcItem2, orig_pcItem3, orig_
pcItem4, orig_pcInv, orig_pcPause, orig_xInv, orig_xPause;
bool ShowPopup = false;
KeyCode PreviousKey;

In the SetDefaultValues function, assign these variables to our previous control
variables in both the if and else statements:

orig_pcItem1 = pcItem1;
orig_pcItem2 = pcItem2;
orig_pcItem3 = pcItem3;
orig_pcItem4 = pcItem4;
orig_pcInv = pcInv;
orig_pcPause = pcPause;

Interactive Input

[20]

Assign the Xbox 360 Controller controls in the else statement:

orig_xInv = xInv;
orig_xPause = xPause;

Next, we are going to add a function that we'll call to switch our keys:

void SetNewKey(KeyCode KeyToSet, KeyCode SetTo)
{
 switch(KeyToSet)
 {
 case KeyCode.Alpha1:
 pcItem1 = SetTo;
 PC_Item1 = SetString(pcItem1.ToString());
 break;
 case KeyCode.Alpha2:
 pcItem2 = SetTo;
 PC_Item2 = SetString(pcItem2.ToString());
 break;
 case KeyCode.Alpha3:
 pcItem3 = SetTo;
 PC_Item3 = SetString(pcItem3.ToString());
 break;
 case KeyCode.Alpha4:
 pcItem4 = SetTo;
 PC_Item4 = SetString(pcItem4.ToString());
 break;
 case KeyCode.I:
 pcInv = SetTo;
 PC_Inv = SetString(pcInv.ToString());
 break;
 case KeyCode.Escape:
 pcPause = SetTo;
 PC_Pause = SetString(pcPause.ToString());
 break;
 case KeyCode.JoystickButton1:
 xInv = SetTo;
 Xbox_Inv = SetString(xInv.ToString());
 break;
 case KeyCode.JoystickButton6:
 xPause = SetTo;
 Xbox_Pause = SetString(xPause.ToString());
 break;
 }
}

Chapter 1

[21]

This new function takes in two properties: the first one will be what KeyCode we set
and the second one will be what KeyCode we are setting the key to. You can see that
we also set our string variables, which are used in the GUI with another function.
We'll create that function now:

string SetString(string SetTo)
{
 switch(SetTo)
 {
 case "Alpha1":
 SetTo = "1";
 break;
 case "Alpha2":
 SetTo = "2";
 break;
 case "Alpha3":
 SetTo = "3";
 break;
 case "Alpha4":
 SetTo = "4";
 break;
 case "Return":
 SetTo = "Enter";
 break;
 case "Escape":
 SetTo = "Escape";
 break;
 case "I":
 SetTo = "I";
 break;
 case "JoystickButton6":
 SetTo = "Start Button";
 break;
 case "JoystickButton1":
 SetTo = "A Button";
 break;
 }
 return SetTo;
}

Interactive Input

[22]

Now in our OnGUI function, we'll need to adjust some of our code. Before we
start our controls group, we will check whether our controls pop up is activated.
Add the if statement to our code and encapsulate the Controls Group:

if(!ShowPopup)
{

Next, we'll edit some of our GUI buttons to allow customization. Start with the
PC_Item1 button and change it to this code:

if(GUI.Button(new Rect(150, 125, 135, 20), PC_Item1))
{
 ShowPopup = true;
 PreviousKey = pcItem1;
}

Do the same thing for the following buttons:

• PC_Item2

• PC_Item3

• PC_Item4

• PC_Pause

• PC_Inv

• Xbox_Inv

• Xbox_Pause

Set ShowPopup to true and PreviousKey to its expected value, accordingly,
such as pcItem2, pcItem3, pcItem4, and so on. Place a closing bracket afterwards
to close the if statement that we created earlier.

Adding the controls pop up to the GUI
It's time to add our controls pop up to the GUI. This is where the player will select
what control to swap. To do this, we will add an else statement, extending our if
statement, to create the pop up:

else
{
 GUI.BeginGroup(new Rect(Screen.width/2 - 300, Screen.height / 2 -
300, 600, 400));
 GUI.Box(new Rect(0,0,600,400), "Pick A Control to Switch");
 if(GUI.Button(new Rect(150, 125, 135, 20), "1"))
 {

Chapter 1

[23]

 SetNewKey(PreviousKey, orig_pcItem1);
 ShowPopup = false;
 }
 if(GUI.Button(new Rect(150, 150, 135, 20), "2"))
 {
 SetNewKey(PreviousKey, orig_pcItem2);
 ShowPopup = false;
 }
 if(GUI.Button(new Rect(150, 175, 135, 20), "3"))
 {
 SetNewKey(PreviousKey, orig_pcItem3);
 ShowPopup = false;
 }
 if(GUI.Button(new Rect(150, 200, 135, 20), "4"))
 {
 SetNewKey(PreviousKey, orig_pcItem4);
 ShowPopup = false;
 }
 if(GUI.Button(new Rect(150, 225, 135, 20), "I"))
 {
 SetNewKey(PreviousKey, orig_pcInv);
 ShowPopup = false;
 }
 if(GUI.Button(new Rect(150, 250, 135, 20), "Escape"))
 {
 SetNewKey(PreviousKey, orig_pcPause);
 ShowPopup = false;
 }
 if(GUI.Button(new Rect(325, 225, 135, 20), "A Button"))
 {
 SetNewKey(PreviousKey, orig_xInv);
 ShowPopup = false;
 }
 if(GUI.Button(new Rect(325, 250, 135, 20), "Start Button"))
 {
 SetNewKey(PreviousKey, orig_xPause);
 ShowPopup = false;
 }
 GUI.EndGroup();
}

Interactive Input

[24]

When the player clicks on one of these new buttons, the SetNewKey function
is called. When called, we pass PreviousKey, which is the key the player is
customizing, as well as the key they select, which is the new value of PreviousKey.
This is a great and simple way to change controls, which makes it simple for
the player.

Resetting the controls
In this section, we will add the ability to allow the player to reset the controls to their
default values.

Adding the Reset function
The reset function will use our SetDefaultValues() function as well as reset a
couple of our other variables:

void Reset()
{
 SetDefaultValues();
 ShowPopup = false;
 PreviousKey = KeyCode.None;
}

Here, we call our SetDefaultValues() function, and then reset some other
variables. Resetting the ShowPopup Boolean and our PreviousKey KeyCode
will ensure that everything related to customization of controls has been reset.

Adding the Reset input
Now, we'll make a GUI button that will call the Reset function. Add this just before
the line of code that ends the GUI group in the OnGUI() function's if statement:

if(GUI.Button(new Rect(230, 370, 135, 20), "Reset Controls"))
{
 Reset();
}

Chapter 1

[25]

When the player clicks on this button, the controls will be set to their default values.
Here is the finished product of the script that you just created:

Playtesting
Now for the most important part, playtesting! Go ahead and play with the GUI buttons
and make sure everything works as it is supposed to. Add the Debug.Log statements
to where you think you may have problems and see which variable is set to what.
Plug in your Xbox 360 Controller and make sure that it detects your controller.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Interactive Input

[26]

Summary
In this chapter, you learned a great deal about how to create and handle control
schemes. You also learned how to change preset control schemes, as well as swap
the controls. You can now create a game that will support both the keyboard/mouse
and Xbox 360 Controller. This is something that is pivotal to games and game design;
not everyone likes to use non-customizable controls.

In the next chapter, we'll go over how to utilize the GUI more in depth. You will
learn about how to create 3D GUI elements as well as 2D elements. Later on in this
book, we will use these new GUI elements to create a more engaging experience.

GUI Time
In video games, the GUI is one of the most important parts of the game. It's where
you see how much health you have, what level you are at, how much gold you're
carrying, and so on. It's how you gather information on your character and the
world you are in.

In this chapter, we'll be covering the following topics:

• Both 2D and 3D GUI elements
• How to create GUI buttons
• How to create a 2D health bar
• Tracking the player's level by using a GUI label
• Using two GUI boxes to make an experience bar
• Creating a 3D health bar
• Showing 3D damage reports
• Showing enemy name tags

A traditional 2D UI
To start our GUI programming, we'll create some buttons, a health bar, a level
counter, and an experience counter. All of these are common in a variety of video
games and are key elements to game design.

GUI Time

[28]

Setting up our scene
Since in this part of the chapter we will be dealing with 3D space, we'll need to set up
a scene to test with. We'll only need a basic test level, so create a new scene and name
it Chapter 2. Add a cube or plane for the floor, a directional light, a GameObject for
our enemy, and two quads. This is what my scene looks like:

Set the two quads in the same position just above your enemy object and rotate one
of them by 180 degrees so that the two quads look like one object. Drag one of the
quads onto the other, making a parent-child object. Now that our scene is ready,
let's get to the scripting.

Housing our 2D UI
Before we start creating our 2D UI, let's make the script to house it all. Create a
new C# script and name it GUI_2D. Inside the script, remove the Update function.
Add a OnGUI() function. Finally, add System.Collections.Generic to your using
statements; we'll need this for some of our variables.

Creating GUI buttons
Our first step in creating 2D buttons in our GUI will be to add these variables:

List<Rect> SkillButtons = new List<Rect>();
List<Rect> ItemButtons = new List<Rect>();

Chapter 2

[29]

We will use these two List arrays as containers to hold the rectangles for
our buttons. For now, they aren't public but if you wanted to expose them
to Inspector, you could make them public.

Next, we'll need to add rectangles to our lists. Add this block of code to our
Start() function:

SkillButtons.Add(new Rect(Screen.width/2 + 50, Screen.height/2 + 333,
55, 55));
SkillButtons.Add(new Rect(Screen.width/2 + 105, Screen.height/2 +
333, 55, 55));
SkillButtons.Add(new Rect(Screen.width/2 + 160, Screen.height/2 +
333, 55, 55));
ItemButtons.Add(new Rect(Screen.width/2 - 160, Screen.height/2 + 333,
55, 55));
ItemButtons.Add(new Rect(Screen.width/2 - 105, Screen.height/2 + 333,
55, 55));
ItemButtons.Add(new Rect(Screen.width/2 - 50, Screen.height/2 + 333,
55, 55));

Here, we will add three buttons to each of our lists. We place our skill buttons to the
right of the center of the screen, and we place the item buttons to the left of the center
of the screen. Also, all of our buttons have a width and height of 55.

Our last step in creating our buttons is to draw them. We will add this code to our
OnGUI() function:

GUI.Button(SkillButtons[0], "Skill A");
GUI.Button(SkillButtons[1], "Skill B");
GUI.Button(SkillButtons[2], "Skill C");
GUI.Button(ItemButtons[0], "Item A");
GUI.Button(ItemButtons[1], "Item B");
GUI.Button(ItemButtons[2], "Item C");

What each of these lines does is draw our button at the location of our rectangles,
which we stored in our lists. They also provide text to be displayed on the button;
we will use placeholder text as an example.

Creating a health bar
To create a health bar, we will use a GUI box. First, we'll need to add a few variables
to calculate our health and the length of the bar:

public float currentHP = 100;
public float maxHP = 100;
public float currentBarLength;
public float maxBarLength = 100;

GUI Time

[30]

We have two variables for our health and bar length: one for the current amount and
the other for the maximum amount. Our variables are set to public so that we can
access them from outside our script.

Finally, to make the health bar, we'll need to add a couple of lines to the OnGUI()
function to draw it on the screen:

currentBarLength = currentHP * maxBarLength / maxHP;
GUI.Box(new Rect(Screen.width/2 - 20, Screen.height/2 + 300,
currentBarLength, 25f), "");

The first line of the code will draw our health bar. We set its location to be just
above our buttons we created earlier. The second line of the code calculates how
long the health bar will be. It multiplies the current amount of health by the
maximum bar length, and then divides it by the maximum amount of health.
All of these are variables that we've set to 100, but can be modified to make
the bar bigger or smaller.

Level counter
Our level counter will be used to show the player's current level. It's a simple yet
gratifying GUI element for the player. We'll only need one variable for the counter:

public int currentLevel = 1;
public GUIStyle myStyle;

We'll use currentLevel to show the player's current level. The GUIStyle variable
will be used to access the properties of our GUI label. To draw this on the screen,
we'll use a GUI label; add this line of code to the OnGUI() function:

GUI.Label(new Rect(Screen.width/2 + 15, Screen.height/2 + 335, 30,
30), currentLevel.ToString(), myStyle);

What this line of code does is draw the currentLevel variable on our screen,
between the two sets of buttons.

In the Start() function, add this line of code at the end:

myStyle.fontSize = 36;

We add this so that we can edit the size of the label font.

Chapter 2

[31]

Creating an experience counter
The experience counter will show the player how much experience they earned as
well as how much more experience is left until they gain a new level. To show this,
we will use two GUI boxes: one for the player's current experience amount and the
other for the total amount of experience possible.

First, we'll need to add a few variables; they'll be similar to the ones we used in the
health bar:

public float maxExperience = 100;
public float currentExperience = 0;
public float currentExpBarLength;
public float maxExpBarLength = 100;

Our next step will be to draw it in the OnGUI() function:

 currentExpBarLength = currentExperience * maxExpBarLength /
maxExperience;
if(currentExpBarLength > 5)
 GUI.Box(new Rect(Screen.width/2 - 20, Screen.height/2 - 300,
currentExpBarLength, 25), "");
 GUI.Box(new Rect(Screen.width/2 - 20, Screen.height/2 - 300,
maxExperience, 25), "");

As you can see, we follow the same code as we did to draw our health bar, except
we draw two boxes on top of each other. The first box represents the current amount
of experience; it only shows when the player has earned more than five experiences.
This is to prevent the box from looking inside-out. The second box shows the
maximum amount of experience.

Our next step will be to reset our experience and increase our level when the
maximum amount of experience is gained. Enter this code:

if(currentExpBarLength >= maxExpBarLength)
{
 currentExpBarLength = 0;
 currentExperience = 0;
 currentLevel++;
}

GUI Time

[32]

In the preceding if statement, we check to see whether our current experience bar
length is greater or equal to the maximum of the experience bar length. If it is, we
reset our current experience and current experience bar length to 0. Then, finally,
we increase our current level. The 2D section of this chapter is now complete.
This is what our scene looks like now with our 2D GUI:

Building an immersive 3D UI

For our 3D GUI, we'll create similar elements that are used in 2D. We will create
health bars, damage reports, and enemy name tags that will all appear to be in 3D.

Housing our 3D UI
We will follow similar steps when housing our 3D UI as we did when housing our
2D UI. Create a new script and call it GUI_3D.

Chapter 2

[33]

Creating a 3D health bar
Our first step will be to add our variables needed for the health bar:

public float currentHealth = 100;
public float maximumHealth = 100;
float currentBarLength;
public Transform HealthBar;
Vector3 OrigScale;

The first three variables are what we'll use to calculate our health bar. The Transform
variable is how we'll interact with our 3D object that's being used as our health bar.
The Vector3 variable is a reference point for when we scale the bar.

Our next step will be to add a Start() function. We'll use the Start() function to
set the OrigScale variable:

void Start()
{
 OrigScale = HealthBar.transform.localScale;
}

We set OrigScale before we do anything else in the health bar. This is what we'll use
as a reference point for the health bar. Next, we'll create our Update() function:

void Update()
{
 currentBarLength = currentHealth / maximumHealth;
 HealthBar.transform.LookAt(Camera.main.transform);

 if(Input.GetButton("Fire1"))
 {
 currentHealth -= 1.00f;
 ChangeBar();
 }
}

We will use currentBarLength to scale our object, so we set it by dividing
currentHealth by maximumHealth. This will give us a value less than or equal to 1
and will scale our health bar perfectly. Next, we tell our HealthBar quad to look at
our camera; this will allow us to always see it in 3D space. For testing purposes, we
subtract the currentHealth value and call the ChangeBar() function when we press
the left mouse button.

GUI Time

[34]

Our final step in creating the 3D health bar is to create the ChangeBar() function:

void ChangeBar()
{
 HealthBar.transform.localScale = Vector3.Lerp(OrigScale, new
Vector3(currentBarLength, OrigScale.y,OrigScale.z), Time.time);
}

Here, we set the localScale value of the HealthBar quad by lerping from
OrigScale to our new scale. The new scale uses CurrentBarLength to determine
the width of our health bar. When you press the left mouse button while testing the
scene, you'll see the health bar go down over time.

Creating 3D damage reports
The damage reports will show up every time damage is done to our enemy. It'll pop
up above the enemy for a brief amount of time and then disappear again. To start
things off, we'll add a few variables to our script for the damage reports:

public TextMesh DamageReport;
public float Damage = 5;
Color txtColor;
public float SpawnTime = 2;
public float KillTime = 3;
public float PreviousTime = 0;
bool HasChanged = false;

The TextMesh object is the actual 3D text object that we use to show the damage
report in-game. The Damage variable is what will be shown in the text of our
TextMesh. We use a Color variable so that we can modify the alpha value of the
TextMesh object; this will allow us to turn on/off the TextMesh object without
having to instantiate it.

The next three float variables are used when we create a timer. We use the timer to
pick when we want to show or hide the damage report. Lastly, the bool variable will
help us check if we've taken damage or not.

Our next step will be to add a couple lines to our Start() function:

txtColor = DamageReport.color;
txtColor.a = 0;

The txtColor variable is what we'll use to show or hide the damage report.
First, we set it to the color of TextMesh, and then we set its alpha value to zero.
We set it to zero so that the player can only see it when damage is done.

Chapter 2

[35]

The new Update function
Our next step is to add our Update() function. We will actually change this function
a lot, so I'll show you the entire function and then go through it step by step:

void Update()
{
 currentBarLength = currentHealth / maximumHealth;
 HealthBar.transform.LookAt(Camera.main.transform);

 DamageReport.color = txtColor;
 if(Time.time > (SpawnTime + PreviousTime))
 {
 DamageReport.text = Damage.ToString();
 txtColor.a = 1;
 if(!HasChanged)
 {
 currentHealth -= Damage;
 ChangeBar();
 }
 }
 if(Time.time > (KillTime + PreviousTime))
 {
 DamageReport.text = "";

 txtColor.a = 0;
 PreviousTime = Time.time;
 HasChanged = false;
 }
}

The first two lines of the function haven't changed, but they should remain at the
top of the function. The next line sets the color of our TextMesh to our color variable.
Now we will encounter our first timer:

if(Time.time > (SpawnTime + PreviousTime))
{
 DamageReport.text = Damage.ToString();
 txtColor.a = 1;
 if(!HasChanged)
 {
 currentHealth -= Damage;
 ChangeBar();
 }
}

GUI Time

[36]

Here, we check whether the current time passed in-game is greater than the value of
the SpawnTime variable plus the PreviousTime variable. SpawnTime is the variable
that we use to spawn the damage report. PreviousTime will be set later; this is used
to mark the previous time we showed the damage report.

When the current time passed is greater than SpawnTime and PreviousTime
together, we show the damage report. We first set the text of TextMesh to the value
of the damage variable. Then, we set its alpha value to one; this is so that the player
can see it on the screen.

Afterwards, we check whether HasChanged is false. If it is false, then we subtract the
health with our Damage variable. We then run the ChangeBar function. Time to look
at the next timer:

if(Time.time > (KillTime + PreviousTime))
{
 DamageReport.text = "";

 txtColor.a = 0;
 PreviousTime = Time.time;
 HasChanged = false;
}

The if statement is similar to the previous timer, but we check with KillTime
instead of SpawnTime. KillTime is what we'll use to hide the damage report.
Within the if statement in the first line, we set the text of TextMesh to an empty
value. For good measure, we set the alpha value of TextMesh to zero to hide it.

After this, we set the PreviousTime variable to the current time passed in-game.
This will represent the last time damage report in the game. Finally, we set the
HasChanged variable to false.

Completing the damage reports
Our last step in creating the damage report will be to add one line of code to the
ChangeBar() function:

HasChanged = true;

Setting this to true will allow us to run the ChangeBar() function again. We use
the bool variable so that the ChangeBar() function doesn't continually run in the
Update() function. If we didn't use the bool variable, our currentHealth would
run down past zero and the scale of our health bar would be in the negative.

Chapter 2

[37]

Creating 3D name tags
The name tag is what will be used to show the player what the enemy's name and
level is. To create it, we'll perform similar steps as we did while creating the damage
reports. Our first step is to add a few variables:

public string Name = "Skeleton Warrior";
public int Level = 1;
public TextMesh NameTag;

We set all our variables here to public so that we can access them later. The Name
string is the enemy's name, the Level integer is the enemy's level, and TextMesh
NameTag is the object we use to represent the previous two variables.

Next, we will create a new function, which we will use to set the name tag. Add this
function to the bottom of your script:

void SetNameTag()
{
 NameTag.text = Level + " " + Name;
}

Here, we set the NameTag text to the level and name variables. We add a few spaces
between them so that the name tag looks good on the screen. This completes the
creation of our name tag as well as our 3D GUI. Here's what our scene now looks
like with our 2D and 3D GUI:

Playtest

GUI Time

[38]

Try these steps to playtest the different parts of this chapter:

1. Press the play button and test to see if everything works correctly.
2. Move the camera around to different angles to ensure the 3D GUI always

looks at the camera.
3. To test the GUI buttons, add the Debug.Log statements to them to show that

they work.
4. Iterate the currentExperience variable to ensure the experience bar

works correctly.
5. Modify the timer variables to see which fits better.

Summary
In this chapter, you learned a few ways to create a GUI. First, you started off by
learning the traditional way of creating the GUI by making buttons, bars, and text.
Then, we switched gears and learned how to make a 3D GUI by making 3D health
bars, 3D damage reports, and 3D name tags.

In the next chapter, you will learn how to make a few different classes for in-game
items. First, we'll create a class so that items will affect the player, the next class will
allow items to affect other objects on touch, and the final class will be created for
projectiles. All of these can be used for the player, enemies, or environment objects.

Expandable Item Classes
Items in video games are very important. They can be tools, weapons, healing items,
traps, clothing, armor, ammo, keys, and so on. Items are what the player will interact
with the most in your game. Since the items are so often used, it is a good practice to
create item classes that can be expanded and used in all possible situations without
having to rewrite the class.

In this chapter, we will cover the following topics:

• Creating customizable classes for items
• Learning how GameObjects can interact with each other through

sending messages
• Creating an Item class that affects the player
• Creating a Melee item class that will affect environments and enemies
• Creating a Projectile item class that can be used for items that

travel distances
• Utilizing a classification system for all objects to decide what they do
• Using trigger-based collisions for the Melee and Projectile item classes
• Using two types of movement for projectile items

The self item class
The first item class we'll create is for an item that affects the player upon usage.
Items that players use typically affects their various stats either by adding or
removing them or buffing/debuffing them for a certain amount of time.
Now let's start scripting; create a new script and name it itemSelf.

Expandable Item Classes

[40]

Adding our variables
Our first set of variables will actually be added outside of our class as they are
enum variables:

public enum SelfAction {BuffDebuff, ChangeHP, ChangeArmor, None};
public enum SelfType {Armor, Potion, None};

The first enum we created will be used to pick what the item does. We've got a few
options for our items, but this can be expanded and customized to your liking.
The second enum we use will determine of what type the item is; for now,
we're just checking to see whether it's a potion or armor. Now let's add the
rest of our variables:

public GameObject Player;
public int Amount, Value, ArmorAmount;
public float Weight;
public string Name, Stat;
public SelfAction selfAction = SelfAction.None;
public SelfType selfType = SelfType.None;

We add a GameObject so that we have a player reference to adjust stats. The rest
of the variables we added are for the item stats. Finally, we add our two enums
to our list of variables. We make these variables public so that anyone can just
drag-and-drop the scripts for easy item creation.

Buff or debuff stats
The first function we'll add to our item script will allow us to add or subtract player
stats. Add the following code to your script:

void BuffDebuffStat()
{
 Player.SendMessage("BuffDebuffStat", new KeyValuePair<string,
int>(Stat, Amount));
}

When we call this function, we send a message to our player, which will call a
function in a script on the player that will add or subtract the stat we specify. In this
message, we tell this function which function to call as well as send a KeyValuePair
variable. We use a KeyValuePair variable to send both the stat we want to modify as
well as the amount that we want to modify it by.

Chapter 3

[41]

The health changer
Our next function to be added will be one that will affect the player's health.
Add the following code to your script:

void ChangeHealth()
{
 Player.SendMessage("ChangeHealth", Amount);
}

When we call ChangeHealth, we send a message to the player to call a function
known as ChangeHealth, and we send Amount as well. As you can see, we use
Amount often. Since changing stats is all about amounts, we use a single variable
to make it easier for us.

The armor changer
The next and final stat modifying function we'll add will allow us to adjust the armor
of our player. Add this function to your script:

void ChangeArmorAmount()
{
 Player.SendMessage("ChangeArmorAmount", ArmorAmount);
}

This function is similar to the ChangeHealth function. We send the player a message
to call a function that will change the player's armor amount. Then, we also send it
the amount we want to change it by.

The item activator
This last function that we add will be called by other classes to activate the item.
Add this last function to your script:

void Activate()
{
 switch(selfAction)
 {
 case SelfAction.BuffDebuff:
 BuffDebuffStat();
 break;
 case SelfAction.ChangeHP:
 ChangeHealth();

Expandable Item Classes

[42]

 break;
 case SelfAction.ChangeArmor:
 ChangeArmorAmount();
 break;
 }

 if(selfType == SelfType.Potion)
 Destroy(gameObject);
}

When this function is called, we use a switch statement to check the selfAction
variable. This is an easy way to see what the item should do when the player uses it.
At the end of the Activate function, we check to see what type of item it is. If it is
a potion, we destroy the GameObject. Not all items get destroyed upon use, such as
armor, so we use the selfType variable to determine what type of item it is.

The melee item class
The melee item class will have similar properties and functions as the self item class.
What is different about the two is that the functions don't affect the player, but other
GameObjects. Also, the way we activate the item is different.

To get started, create a new script and name it itemMelee. We'll start our script by
adding some variables, similar to the ones we used in the itemSelf class.

Adding our variables
First, we'll add a couple of enum variables:

public enum MeleeAction {BuffDebuff, ChangeHP, ActivateEnv, None};
public enum MeleeType {Weapon, Potion, None};

The MeleeAction enum will decide what the melee item does. Since melee items can
interact with various GameObjects, its actions will vary just as much as it can. The
MeleeType enum will determine whether the player uses a weapon, potion, or no
items. Now, let's add the rest of our variables in:

public int Amount, Value;
public float Weight;
public string Name, Stat;
public MeleeAction meleeAction = MeleeAction.None;
public MeleeType meleeType = MeleeType.None;

As you can see, the variables are similar to the ones we used in our itemSelf class;
our only major differences are the different names for our Type and Action enums.

Chapter 3

[43]

Buff or debuff stats
The first function that we'll add to our melee item will allow melee items to modify
the stats of other objects. Add this function to the script:

void BuffDebuffStat(GameObject other)
{
 other.SendMessage("BuffDebuffStat", new KeyValuePair<string,
int>(Stat, Amount));
}

This function, when called, receives a GameObject, which will be the GameObject
that we are affecting with the melee item. We then send a message to that
GameObject to call the function that modifies the stats, and then pass the
KeyValuePair to it. The KeyValuePair contains the stat we want to modify
as well as the amount that we want to modify it by.

The health changer
The next function we'll add to the script will allow the melee item to change the
health of other GameObjects. Add the following function after the BuffDebuffStat
function in our script:

void ChangeHealth(GameObject other)
{
 other.SendMessage("ChangeHealth", Amount);
}

When this function is called, it will modify the health of the GameObject that the
melee item collides with. This could mean healing or hurting the GameObject,
but this function can be used either way.

Let's interact with the environment
The last and final function will allow the player to interact with the environment.
Add this function to your script:

void ActivateEnvironment(GameObject other)
{
 other.SendMessage("Activate");
}

This function is called when the melee item collides with an environmental object the
player can interact with. We send the object we want to interact with the message to
activate. From here, the other GameObject handles the rest of the interaction.

Expandable Item Classes

[44]

Detecting triggers
In order to call the functions that we just created, we have to create the interaction
between the melee item and the other GameObject. Add this final function to
the script:

void OnTriggerEnter(Collider col)
{
 switch(col.gameObject.tag)
 {
 case "Enemy":
 if(meleeType != MeleeType.Potion)
 {
 if(meleeAction == MeleeAction.ChangeHP)
 ChangeHealth(col.gameObject);

 if(meleeAction == MeleeAction.BuffDebuff)
 BuffDebuffStat(col.gameObject);

 if(meleeAction == MeleeAction.ActivateEnv)
 ActivateEnvironment(col.gameObject);
 }
 break;
 case "Environment":
 if(meleeType == MeleeType.Potion)
 {
 if(meleeAction == MeleeAction.ChangeHP)
 ChangeHealth(col.gameObject);

 if(meleeAction == MeleeAction.BuffDebuff)
 BuffDebuffStat(col.gameObject);
 }
 break;
 }

 if(meleeType == MeleeType.Potion)
 Destroy(gameObject);
}

To detect the contact between the melee item and GameObject that the player hits,
we use OnTriggerEnter to activate our functions. When the melee item enters a
triggered GameObject, the OnTriggerEnter function is called and it will receive
the GameObject that it entered.

Chapter 3

[45]

From here, we use a switch statement to check the tag of the trigger GameObject.
Using a tag is a quick way to check what the player hit with their melee item. Once
we find the correctly tagged GameObject, we check the meleeType variable and then
the meleeAction variable.

Depending on the type of melee item, we decide what the item can and can't do.
In both case statements, we check whether the melee type is a potion or not; this
will decide whether to activate environmental objects or not. Also, at the end of the
function, we destroy the melee item if it is a potion; this ensures that potions are a
single-use item.

The projectile item class
It is time for our final item class, which is the projectile item class. These kinds of
items could be bullets, arrows, thrown items, and so on. The projectile item class
will be similar to the melee item class, except this one will have functions that will
allow it to move in the game world. We'll start by creating a new script and naming
it itemRanged.

Adding our variables
As we did in the previous two classes, we'll need to first add a few enums to our
script. Add these variables to our script:

public enum RangedAction {BuffDebuff, ChangeHP, ActivateEnv, None};
public enum RangedType {Weapon, None};
public enum MovementType {Basic, Drop, None};

You can see that we have a couple of familiar variables that we will use for the action
and type of the item. We also have a new enum; this one will be used to determine
how the object will move when it's created. The basic type will move the object
through the air with simple movement. The drop type is similar to the basic type,
but will allow the object to drop in the air as if gravity was acting on it.

Now, let's add the rest of our variables:

public int Amount, Value;
public float Weight, Speed, DropSpeed;
public string Name, Stat;
public RangedAction rangedAction = RangedAction.None;
public RangedType rangedType = RangedType.None;
public MovementType moveType = MovementType.None;

Expandable Item Classes

[46]

As you can tell, many of these variables are similar to the ones we previously
used. These variables are typical to our items; the only one that is different is
the MovementType enum. Now let's move on to adding our functions.

Buff or debuff stats
Let's allow our projectile to affect enemy stats; add this function to our script:

void BuffDebuffStat(GameObject other)
{
 other.SendMessage("BuffDebuffStat", new KeyValuePair<string,
int>(Stat, Amount));
}

Just like the melee item, we receive the GameObject that the projectile collides
with. Then, we send a message to that object to call a function and send it a
KeyValuePair variable.

The health changer
Our next function will allow our projectile to do the most common effect that
projectiles have, which is hurt or heal others. Let's add the following function
to our script:

void ChangeHealth(GameObject other)
{
 other.SendMessage("ChangeHealth", Amount);
}

This function should be familiar; it acts the same way as the one we used in the
melee item.

Adding movement
These next few functions will add movement to our projectile. We have two kinds of
movements, so we'll separate them into two different functions:

void BasicMovement()
{
 transform.Translate(Vector3.forward * (Time.deltaTime * Speed));
}

void DropMovement()
{
 transform.Translate(new Vector3(0, DropSpeed, 1) * (Time.deltaTime *
Speed));

Chapter 3

[47]

}

void Update()
{
 switch(moveType)
 {
 case MovementType.Basic:
 BasicMovement();
 break;
 case MovementType.Drop:
 DropMovement();
 break;
 }
}

In the Update function, we check the moveType variable in a switch statement to
determine how the projectile will move through the air. Depending on the value
you assign to it, it'll either call the BasicMovement function or the DropMovement
function. Let's take a look at the BasicMovement code:

transform.Translate(Vector3.forward * (Time.deltaTime * Speed));

Here we set the transform of the GameObject to move forward in the z axis.
We multiply the movement Vector by deltaTime and our Speed variable. The
Speed variable will allow you to control how fast or slow the projectile will go:

Now let's take a look at the DropMovement code:

transform.Translate(new Vector3(0, DropSpeed, 1) * (Time.deltaTime *
Speed));

This line is similar to the BasicMovement line, but our movement Vector is
different. We use the DropSpeed variable in the y axis to make our projectile drop
to the ground. It will appear as if gravity is acting on our projectile, giving it a more
realistic appearance. Dropping the projectile will also make it a little more difficult
for the player to attack, adding a new mechanic to the game.

Detecting triggers
Now we'll add detection method to our projectile. We will use a similar system that
we used in the melee item class. Add the following code to your script:

void OnTriggerEnter(Collider col)
{
 switch(col.gameObject.tag)
 {

Expandable Item Classes

[48]

 case "Enemy":
 if(rangedType == RangedType.Weapon)
 {
 if(rangedType != RangedType.None)
 {
 if(rangedAction == RangedAction.ChangeHP)
 ChangeHealth(col.gameObject);

 if(rangedAction == RangedAction.BuffDebuff)
 BuffDebuffStat(col.gameObject);

 if(rangedAction == RangedAction.ActivateEnv)
 ActivateEnvironment(col.gameObject);
 }
 }
 break;
 case "Environment":
 if(rangedType != RangedType.None)
 {
 if(rangedAction == RangedAction.ChangeHP)
 ChangeHealth(col.gameObject);

 if(rangedAction == RangedAction.BuffDebuff)
 BuffDebuffStat(col.gameObject);

 if(rangedAction == RangedAction.ActivateEnv)
 ActivateEnvironment(col.gameObject);
 }
 break;
 }
 Destroy(gameObject);
}

Just as in the melee item class, we use triggers to detect whether the projectile has
hit something; if it does, we take the collider of that GameObject. Once we have
detected the collision and received the collider, we follow these steps to decide
what to do next:

• In the switch statement, we use the tag of the GameObject collider to check
what it's colliding with

• We then check if the rangedType variable isn't equal to None
• Afterwards, we go through a few if statements to see what action we

are using
• Once the action has been found, we call its function accordingly
• While calling the function, we pass the GameObject as well
• Finally, after all this is done, we delete the projectile from the scene

Chapter 3

[49]

At first, it may look confusing, but we are really just following a step-by-step
process of logic to decide what our projectile should do. With this, we conclude
the projectile item class as well as all of our item classes we created. Next, we move
on to playtesting!

Playtesting
To playtest these item classes, try doing any of the following:

• Keep in mind that to use triggers, your GameObject must be a RigidBody
• Modify all of the variables to see what different results you get
• Try different combinations of actions and types to see what happens
• Add more actions and types to the classes and see how your functions

behave for them
• Set up a test scene and use all of the item classes we created
• Modify the speed variables in the projectile class to see the varying results
• For melee items, add a health variable to it and create an endurance system
• For projectile items, see if you can figure out how to allow the item to pass

though multiple objects before destroying itself
• For self items, try to add a functionality to allow multiple uses of items

before they get destroyed

Summary
In this chapter, you learned how to create three different kinds of items. First, we
created a class of items that would affect the player upon activation. Then, we delved
into a class for melee items that affect other GameObjects. Finally, we created a class
for projectile items. All of these classes have similar properties and methods, yet each
one is used slightly different each time.

In the next chapter, we will go over how to create an inventory system. First, we
will figure out how to make a storage system that fits our game. Next, we'll create a
GUI-based interface system so that the player can interact with their inventory easily.
Finally, we'll create a Quick Equip system. This will allow the player to equip or use
various items by using hot keys either on the screen, on their keyboard, or on their
controller without pausing to go to the inventory menu.

Inventory
In this chapter, we will create an inventory storage system. We'll also create a GUI
representation of the inventory for the player to interact with, as well as showing
the player their quick items. Items that can be quickly used or equipped using easy
access keys are known as quick items; they are used frequently in RPG and FPS
games. Inventories are used in many games from all genres, so having a good way
to make one is very helpful.

In this chapter, we will cover the following topics:

• Creating a storage system for GameObjects
• Adding items to the inventory
• Removing items from the inventory
• Initializing the inventory
• Setting the inventory size to be dynamic
• Making it possible to have multiples of items
• Setting quick items that can be used by our custom quick item inputs
• Accessing the inventory using our custom inventory inputs
• Displaying the inventory on screen via GUI

Features of an inventory
Before creating an inventory, you must figure out what kind of inventory fits
your game best. There are various features that an inventory has that will need
to be figured out when designing one. The following are the features that we
will discuss:

• Limits
• Accessibility
• Order

Inventory

[52]

Limits of the inventory
There are two common ways to limit an inventory; they are weight and slot size.
If an inventory is based on weight, it will only carry a certain number of objects that
are within its weight bearing limits. If an inventory is based on slot size, the player
can have as many objects as long as there are slots and the weight of an object either
doesn't matter or isn't tracked at all.

An example of a weight-limited inventory is found in games such as The Elder
Scrolls V: Skyrim. The player can keep items in their inventory up to a certain
accumulated weight limit. An example of a slot size limited inventory is found in
games such as Borderlands. In Borderlands, the player's backpack is set to a certain
number of slots where they can keep items; if the limit is reached, the player can't
pick up any more items.

There is a third way to limit inventory, which is to combine the slot size method
with the weight method. An example of this combination method is Baldur's Gate 2.
In this game, the player has a backpack with multiple slots, but also a weight limit.
So they may at times reach the weight limit in the inventory, but still have slots open
in the inventory. Alternatively, they can reach the slot size limit of the inventory
but still be holding less than the maximum weight limit.

Accessing the inventory
To access the inventory, you, as the designer, have a few options to choose from.
Some of the more common ways to allow the player to access the inventory are a
menu system, quick-items, and an item bar. You can also combine any or all of
these methods to allow to the player to utilize the inventory in dynamic ways.

In a menu-based inventory, when the player presses a key on their keyboard or a
button on their gamepad, they are taken out of the gameplay to the inventory menu.
Depending on the game, this can be a single menu showing their entire inventory,
or a menu broken up into submenus to organize their items.

When a quick-item method is used to access the inventory, the player just presses
a key or button and their item is instantly selected. For some games, this item
might need to be assigned first in an inventory menu, or in some games it may
be predefined as to which item is assigned to which key or button.

Chapter 4

[53]

If you create a game where the player will need to use a lot of items and you don't
want them to open a menu stop the gameplay, then an item bar might be what you
need. An example of an item bar can be seen in Massive Multiplayer Online games
such as World of Warcraft. This is where the player has a GUI-based bar with button
slots to hold items, spells, abilities, and so on. What each of the buttons does can be
customized by the player so that they can get full control over and access to their
favorite or most used items without having to use a menu to access them.

Organizing an inventory
The items within an inventory can be organized in a few ways depending on the
physical size, item type, slot size, or alphabetical order. Organization by physical
size can be either lightest to heaviest or heaviest to lightest. When organizing by item
type, healing items should be kept separate from weapons and armor. These separate
item types can be split up into multiple submenus: one each for weapons, armor,
healing items, and so on.

Organization by slot size can be seen in games such as the Diablo series, where
the items vary in slot size both vertically and horizontally. The player must move
items around in their inventory to make room for other items. The last method
of organizing items in the inventory, as mentioned previously, is alphabetically.
This will show items by names from the beginning of the alphabet or from the end.

Item count modifications
Now that we have discussed the features of the inventory, we need to figure out how
items in the inventory can be gained or lost. This can be done in the following ways:

• Buying, selling, and trading items
• Dropping and picking up items
• Destroying or using items

Item bartering
If your game has a lot of items in its world, you might have included shops
within that world. In these shops, the player can sell their items or buy more
items. This method is very common in role-playing games, as these types of
games have many items. Another way to barter items is to trade them. This can
be done in offline games, but this is mostly seen in online games where players
can use a menu system to trade their items.

Inventory

[54]

Dropping and picking up items
When the player's inventory is full or almost full, they might come across an item
that they want. If the option is made available, the player can drop an item they don't
want anymore and pick up the new item to replace it. Dropping an item can insert
it back in the game world or simply destroy it. Picking up an item can be done by
walking over it or selecting it with a key or button.

Destroying and using items
If the player has a bow, they will most likely have a multitude of arrows to shoot.
When these arrows are shot, the number of arrows will go down. Once all arrows
have been shot, the arrows will no longer be in their inventory, since the player has
used them all. Using healing items might also modify how many healing items are
left, unless the items are designed to stay in the inventory without a limit on usage.

Destroying an item can be done manually by the player if they no longer want to
keep that item. There can also be a condition stat on a weapon or a piece of armor.
When the condition gets too low, the item will be destroyed in the inventory, making
it unusable. Another way to destroy an item is to assign it a certain number of uses;
once it exceeds this number of uses, it can be destroyed automatically.

Displaying the inventory
The final step in using an inventory is to display it to the player. This is done on the
GUI with icons, images, or with the 3D model. The icon can either be a scaled down
image of the item, or it can be a silhouette of the item to represent it. An example
showing the 3D model of the item can be seen in The Elder Scrolls V: Skyrim,
where the player can select the item in their inventory and interact with the
3D model to look at it.

Creating the inventory script
For our inventory, we'll only use one script, so let's get it started.

Creating and naming the script
The first thing we need to do is to create a new C# script and name it Inventory.
When you open the script, delete the Start and Update functions, leaving an empty
class for us to use.

Chapter 4

[55]

Adding the necessary variables
First, add this using statement where the other using statements are. The using
statement will be needed so that we can use the List container variable:

using System.Collections.Generic;

Now, let's add the variables we require and place them after the opening class
defining bracket:

bool showInventory = false;
public Rect inventoryRect = new Rect(Screen.width / 2, Screen.height /
2, 400, 400);
public GameObject EmptyObject;
public int InventorySize = 9;
public GameObject[] invItems;
public GameObject[] QuickItems;

List<KeyValuePair<int, GameObject>> items = new List<KeyValuePair<int,
GameObject>>();

List<KeyValuePair<int, int>> itemCount = new List<KeyValuePair<int,
int>>();

The showInventory variable will be used when we activate an input. This is how
we determine when to and when not to show the inventory GUI. Next, we have a
Rectangle variable, that we'll use to determine where we put the inventory GUI
and what size it should be. By default, we set the X and Y positions to the center
of the screen.

Our next variable is a GameObject; in the Inspector panel we will set this as an
empty object. We'll be using the empty object in our inventory as a placeholder when
there is no item to be placed there. The next variable, aptly named InventorySize,
will determine the size of our inventory.

The next two variables are GameObject arrays. We use these to hold the actual
GameObject items that we will hold in our Inventory. InvItems will hold the
GameObjects that are in our inventory and QuickItems will hold the GameObjects
that the player wants as their quick-items.

Lastly, we have two lists for our final variables. The first one will hold the
GameObject items within our inventory; the list is made up of KeyValuePairs.
The key will be the ID of our item and the value is a GameObject, which is the
item in our inventory.

Inventory

[56]

Our next list is also made up of KeyValuePairs and both the Key and Value are
integers. The Key will be our ID that will match itemCount to the correct inventory
item. The Value will be the actual number of items that we have.

Initializing our inventory
Time for our first function! This method will be used to create our inventory for the
first time.

Creating the initializer
Let's create our initializer by adding the following function to the script:

void InitializeInventory()
{
 invItems = new GameObject[InventorySize];
 for(int i = 0; i < InventorySize; i++)
 {
 invItems[i] = EmptyObject;
 items.Add(new KeyValuePair<int, GameObject>(i, invItems[i]));
 itemCount.Add(new KeyValuePair<int, int>(i, 0));

 if(i < QuickItems.Length)
 QuickItems[i] = invItems[i];
 }
}

The first line within the new function sets the invItems array size to the
InventorySize variable. Next, we have a for loop that will initialize the
inventory. First, it sets each invItem value to our EmptyObject GameObject
variable, which is our placeholder until we start adding items to the inventory.

Next, we add a new KeyValuePair variable to each slot within the items list.
The key of the new KeyValuePair variable will be our iterator variable from the for
loop. The value of the new KeyValuePair variable will be the GameObject within the
invItems array that currently holds the spot that our iterator is valued at. This is so
that the invItems array and items list are ordered in the same way.

After this, we add a new KeyValuePair variable to our itemCount list. The key is
going to be set to our iterator variable as well and the value will be set to 0. This will
ensure that every item in our inventory will have no value assigned to it, until we
start adding items.

Chapter 4

[57]

The last two lines in our for loop will create our default quick items. We use an if
statement to check whether the value of our iterator is still less than the length of
our QuickItems array. If it is, we set each QuickItems in the array to what is in our
invItems array, which is our EmptyObject GameObject. To call this function, we'll
put it within an Awake function, as follows:

void Awake()
{
 InitializeInventory();
}

We have created our inventory. It's currently an empty inventory, but all the
necessary containers have been created and assigned to default values. Since we
used an iterator variable for all the keys and arrays, all the values in the containers
coincide with each other. We also created and assigned our quick items to empty
GameObjects, just as we did for our inventory.

Adding items
Now, we'll create our first interaction with the inventory: adding items. This is
probably the most important aspect of having an inventory. Why have an inventory
that can't have items added to it?

Let's figure this out
Before we jump into the coding, let's take a moment and plan out how we want to
add items to our inventory. From the player's point of view, adding items to their
inventory is something as simple as placing the item in their bag, or walking into
the object and having it appear in their inventory. What they do is similar to how we
will add items. They see an empty slot in their inventory and then place their newly
obtained item into that slot. We will be following a process similar to that within
our code, creating an inventory system that allows the player to pick up items
off the ground.

Creating the adding function
Add the following function to your script, just below the InitializeInventory
function:

void AddToInventory(int HowMany, GameObject NewItem)
{
 for(int i = 0; i < invItems.Length; i++)
 {

Inventory

[58]

 if(invItems[i].name != "Empty")
 {
 if(invItems[i].name == NewItem.name)
 {
 int val = itemCount[i].Value + HowMany;
 itemCount[i] = new KeyValuePair<int, int>(itemCount[i].Key,
val);
 break
 };
 }
 else
 {
 int val = itemCount[i].Value + HowMany;
 invItems[i] = NewItem;
 items.Add(new KeyValuePair<int, GameObject>(i, NewItem));
 itemCount.Add(new KeyValuePair<int, int>(i, val));
 break;
 }
 }
}

The first thing you'll notice is that our function takes in two variables, an int and
a GameObject variables. The int variable is the number of new items that we want
to add to the inventory. The GameObject is the new item that we want to add to the
inventory. Now, let's go over how exactly we are going to add items to the inventory.

We use a for loop to iterate through each item of our invItems array, since this
is the array that is holding our inventory items. First, we check whether the name
of current invItem is not empty. The only object that we'll be using with the name
"Empty" is actually our EmptyObject variable, which is our placeholder object.

So if the current invItem isn't empty, we move on to check whether its name is
equal to that of the new item's name. If it is, we create a new int variable named
val. The val integer is assigned the total of the current invItem variable's value
and the value of the new item we want to add. After we do this, we set the current
itemCount value to val by assigning it a new KeyValuePair variable. The key
is the current itemCount ID and the value is its amount. After this, we stop the
for loop with break, so that we no longer iterate through our inventory.

If the current invItem variable is empty, we add the new GameObject to our
inventory. We do this by creating the same val integer as we did recently for our
amount, and assigning the value of the current itemCount value plus the amount
of the item that we want to add. Then, we assign current invItems GameObject to
NewItem, the GameObject passed into the function.

Chapter 4

[59]

Next, we add the new item to our items list by creating a new KeyValuePair
variable and assigning its key to the iterator and its value to NewItem. Finally,
we add the new item's amount by adding it to the itemCount list. This is done by
creating another new KeyValuePair variable. We assign the new KeyValuePair
variable's key to the iterator and its value to the val variable.

With this, you now have the capability to add new items to your inventory.
When adding the items, you can add as many as you want. If you want only
one of the new items in the inventory, just set HowMany to 1, and if you want
to remove one, set it to -1.

Removing items
Now, we'll add the second most important aspect of inventories, removing items!
This is handy for those times when a player uses their health potion, sells an item,
shoots a rocket, or drops their coins!

Let's figure this out
Just like we did when we added items, let's take a moment to think about how we
want to remove items from the inventory. Again, from the player's point of view,
how is this done? Well when they sell the item, they are selecting the item personally.
If the player shoots their gun or bow, their ammo is dispensed immediately. When
the player meets their untimely death, their items may be dropped on the ground or
left on their corpse to be looted by their assailant. During the selling item phase and
shooting gun action, they pick what item they want to get rid of from their inventory.
We will follow a similar process when removing items from the inventory.

Creating the removing function
Add the following function to the script, just below the AddToInventory function:

void RemoveFromInventory(int HowMany, GameObject Item)
{
 for(int i = 0; i < items.Capacity; i++)
 {
 if(invItems[i].name != "Empty")
 {
 if(invItems[i].name == Item.name)
 {
 int val = itemCount[i].Value - HowMany;
 itemCount[i] = new KeyValuePair<int, int>(itemCount[i].Key,
val);

Inventory

[60]

 if(itemCount[i].Value <= 0)
 {
 invItems[i] = EmptyObject;
 items[i] = new KeyValuePair<int, GameObject>(i,
EmptyObject);
 itemCount[i] = new KeyValuePair<int, int>(itemCount[i].Key,
0);
 }
 break;
 }
 }
 }
}

Just as when we added items to the inventory, we pass an int variable and a
GameObject to this function. The int variable is the number of the items we want
to remove, and the GameObject is the actual item that we want to remove. Now we
iterate through the items array, which is the array holding our inventory of items.

First we check whether the current invItem variable's name isn't "Empty". If it isn't,
then we move on to see whether the name of the current invItem variable is equal
to the name of the item we want to remove from the inventory. Similar to how we
added items to the inventory, we'll need to create a new int variable, which will
hold the value of the item that we'll decrease. This time, val will be equal to the
current itemCount value subtracted from the HowMany integer that was passed into
the function. We then assign the current itemCount variable a new KeyValuePair
variable, using the same key as key and using val as the value.

Now, we do something a little different from what we did while adding items.
We check whether the current itemCount value is less than or equal to zero; if it is,
we have to do a few things. When an item has an amount of zero or less we have to
remove it from the inventory.

Our first step to remove the item from the inventory will be to set the current
invItem value to our EmptyObject variable, the placeholder. Next, we set the
current item's KeyValuePair variable to new KeyValuePair, the new KeyValuePair
variable will have the iterator as the key and the EmptyObject GameObject as its
value. Finally, we set the current itemCount KeyValuePair to a new KeyValuePair
as well. Its key will stay the same, but we set the value to 0.

After this is all done, we stop the loop with break. Remember when we checked
whether the current invItems name was equal to "Empty"? If it does happen to be
"Empty", we use break again to stop the loop. We can't remove the item from the
inventory, since it is in the inventory to begin with!

Chapter 4

[61]

With that, you now have the ability to remove items from the inventory. When the
player sells an item, shoots an arrow, use a health potion, or anything similar to
these situations, you can remove that specific item from the inventory. This may
seem like a daunting task, but there is a way around this. You can also use the
InitializeInventory function that we first created to reset the inventory,
since that is essentially what that function does.

Setting the quick-select items
In many games, there is a mechanism known as quick-items or quick-select
items. These are items that the player uses often and wants to have access to
very quickly without having to stop the game to go into their inventory. They are
typically accessed by the number keys on the keyboard or the directional pad on
a controller. We will add a small function into our inventory that will allow us to
assign quick-items.

Setting the quick-select items quickly
Add this function to your script, under the RemoveFromInventory function:

void SetQuickItem(GameObject NewItem, int QuickInput)
{
 if(QuickItems[QuickInput].name != NewItem.name)
 if(QuickInput < QuickItems.Length)
 QuickItems[QuickInput] = NewItem;
}

This function takes in two variables, the GameObject that we want as the quick-item
and the slot that we want to assign it to. In the actual function, we check whether the
name of the GameObject in the current QuickItems array is the same as the name of
NewItem. If it is not same, then we will not do anything because the item is already
in that quick-item slot. If it isn't, then we assign the QuickItems array slot, which is
QuickInput, to the GameObject passed into the function.

Let's display the inventory
Now let's move on to the next important aspect of the inventory, showing it to the
player! To do this, we will use GUILayout and a GUI window.

Inventory

[62]

Using our custom inputs
To access the inventory, we have set up a couple of inputs for our player to use to
view the inventory. Let's add an Update function along with some code that will
show the inventory:

void Update()
{
 if(Input.GetButtonUp("I_Key") || Input.GetButtonUp("A_360"))
 {
 showInventory = (showInventory) ? false : true;
 }
}

In the Update function, we check whether the "I_Key" or "A_360" inputs are
pressed. When one of the inputs is pressed, we switch the showInventory Boolean.
When the showInventory Boolean is true, we show the inventory GUI to the player;
if it is false, then we hide the inventory GUI.

Displaying the GUI
Now let's add the OnGUI function to the script, just below the Update function:

void OnGUI()
{
 if(showInventory)
 {
 inventoryRect = GUI.Window(0, inventoryRect, InventoryGUI,
"Inventory");
 }
}

When the showInventory Boolean is true, we show the inventory GUI. We do
this by setting our inventoryRect rectangle variable to a GUI window. The GUI
window will show the inventory window, as well as give it the title "Inventory".

Running the GUI
Now, to run the window, we need a function that will show the contents of the GUI
window. Add the following function to your script, under the OnGUI function:

void InventoryGUI(int ID)
{
 GUILayout.BeginArea(new Rect(0, 50, 400, 350));

Chapter 4

[63]

 GUILayout.BeginHorizontal();
 GUILayout.Button(itemCount[0].Value.ToString() + " " + invItems[0].
name, GUILayout.Height(75));
 GUILayout.Button(itemCount[1].Value.ToString() + " " + invItems[1].
name, GUILayout.Height(75));
 GUILayout.Button(itemCount[2].Value.ToString() + " " + invItems[2].
name, GUILayout.Height(75));
 GUILayout.EndHorizontal();

 GUILayout.BeginHorizontal();
 GUILayout.Button(itemCount[3].Value.ToString() + " " + invItems[3].
name, GUILayout.Height(75));
 GUILayout.Button(itemCount[4].Value.ToString() + " " + invItems[4].
name, GUILayout.Height(75));
 GUILayout.Button(itemCount[5].Value.ToString() + " " + invItems[5].
name, GUILayout.Height(75));
 GUILayout.EndHorizontal();

 GUILayout.BeginHorizontal();
 GUILayout.Button(itemCount[6].Value.ToString() + " " + invItems[6].
name, GUILayout.Height(75));
 GUILayout.Button(itemCount[7].Value.ToString() + " " + invItems[7].
name, GUILayout.Height(75));
 GUILayout.Button(itemCount[8].Value.ToString() + " " + invItems[8].
name, GUILayout.Height(75));
 GUILayout.EndHorizontal();

 GUILayout.BeginHorizontal();
 GUILayout.Button(QuickItems[0].name, GUILayout.Height(50));
 GUILayout.Button(QuickItems[1].name, GUILayout.Height(50));
 GUILayout.EndHorizontal();

 GUILayout.BeginHorizontal();
 GUILayout.Button(QuickItems[2].name, GUILayout.Height(50));
 GUILayout.Button(QuickItems[3].name, GUILayout.Height(50));
 GUILayout.EndHorizontal();

 GUILayout.EndArea();
}

To start off, we access GUILayout and use BeginArea. This is a useful tool to have
a contained area to work with. The next step is to activate the BeginHorizontal
function within GUILayout, which ensures that everything we put on the GUI is in
an even, horizontal line. After this, we create GUILayout buttons, one for each slot
in our inventory. We set the text of the button to the amount and name of an item
within the inventory, then we set the height of the button.

Inventory

[64]

We do this a few times to show all of our inventory items on screen in three
different rows. After this, we do the same thing for QuickItems, except with
two rows of two items. Now, the player can see their inventory by clicking on
one of our custom inputs.

Playtesting
Now that we've created our inventory and can show it on the GUI, let's set up a test
scene and try out our new inventory.

Creating a test scene
To start off, create a new scene and name it "Chapter 4". After this, create two
empty GameObjects, name one of them "Inventory" and the other one "Empty".
Drag Empty to Inventory, creating a parent-child relationship. This is what your
hierarchy should look like now:

Once you've done this, drag the Inventory script to the Inventory GameObject.
Set the X position of Inventory Rect to 300 and its Y position to 200. Then in Inv
Items, set the Size value to 9 and in Quick Items set its Size value to 4. After this,
drag the Empty GameObject to the empty slot next to Empty Object in the Inspector
panel. This is what the Inspector panel of the Inventory GameObject should look
like now:

Chapter 4

[65]

Once you have done this, the scene is ready to be tested. Now run the scene and
press the I key; the inventory GUI should pop up on the screen. The GUI should
look like what is shown in the following screenshot:

Inventory

[66]

Also, the inspector should look like this:

Our inventory works without any errors! Now let's see whether we can add and
remove items just as easily.

Let's add an item
To test whether we can add items to our inventory, we're going to add a bit of code
to the Update function:

if(Input.GetButtonUp("Fire1"))
{
 GameObject test = new GameObject();
 test.name = "Sword";

 AddToInventory(4, test);
}

Chapter 4

[67]

When we click on the left mouse button, we create a new GameObject. We set the new
GameObject's name to "Sword". Then we call the AddToInventory function, passing 4
and test. Here, 4 is the amount that we want to add to the item count and test is the
new GameObject that we want to add. Now, run the scene and press I. Once the GUI is
visible, click on the left mouse button a few times. Your screen should look something
like this:

As you can see, the new item is placed in our inventory. The name of the object as
well as its amount is shown. Now, you'll notice that in the Inspector panel you have
a lot of empty GameObjects added to the scene. This is because you created multiple
new GameObjects within your test code. Your Inspector panel should look like what
is shown in the previous screenshot as well.

Let's remove some items
We can now add items to the inventory, so let's see whether we can remove them
too. Add this bit of code under our previous test code:

if(Input.GetButtonUp("Fire2"))
{
 GameObject test2 = new GameObject();
 test2.name = "Sword";

 RemoveFromInventory(2, test2);
}

Inventory

[68]

When we click the right mouse button, we again create a new GameObject. We also
set its name to "Sword" and then call the RemoveFromInventory function. In the
function call, we pass the 2 and the test2 GameObject. Now, when we run our
game and click the right mouse button, it will remove two of the sword objects
from our inventory. If "Sword" has a value of zero or less, the inventory slot will
be set to our Empty object.

To make sure this works, run the scene and left click your mouse a few times to
add a bunch of swords to the inventory. Now right-click a few times to remove
some swords. You can even remove them until you don't have any swords left
and the slot will be empty.

Other things to try out
Here's a list of other ways you can try to test the inventory even further:

• Make the inventory size larger or smaller
• Remove multiple different items from the inventory
• Remove the empty spaces from the GUI display of the inventory
• Add a button that organizes the inventory by amount and/or by alphabet
• Make the inventory GUI window moveable by the player
• Add a button that resets the inventory to make it empty

Summary
In this chapter, you learned one way of creating an inventory system. You may
find other ways to create an inventory, but this method should suffice to add an
inventory to any game that you create. With this inventory, you can add items,
remove items, have multiples of items, set some quick-items, and finally show
the inventory as a GUI display.

In the next chapter, we will create Artificial Intelligence, more commonly
known as AI. We'll create a simple behavior system to call different events
that the AI can do. The AI will run what we'll call internal events, essentially
doing stuff that affects the AI GameObject itself. Next we'll create external events,
which are actions that will cause the AI to affect other GameObjects such as attacking
or moving around the game world. Finally, we'll create an AI manager and learn
how to play character animations.

Enemy and Friendly AIs
Artificial Intelligence, also known as AI, is something that you'll see in every video
game that you play. First-person shooter, real-time strategy, simulation, role playing
games, sports, puzzles, and so on, all have various forms of AI in both large and
small systems. In this chapter, we'll be going over several topics that involve creating
AI, including techniques, actions, pathfinding, animations, and the AI manager.
Then, finally, we'll put it all together to create an AI package of our own.

In this chapter, you will learn:

• What a finite state machine is
• What a behavior tree is
• How to combine two AI techniques for complex AI
• How to deal with internal and external actions
• How to handle outside actions that affect the AI
• How to play character animations
• What is pathfinding?
• How to use a waypoint system
• How to use Unity's NavMesh pathfinding system
• How to combine waypoints and NavMesh for complete pathfinding

AI techniques
There are two very common techniques used to create AI: the finite state machine and
the behavior tree. Depending on the game that you are making and the complexity
of the AI that you want, the technique you use will vary. In this chapter, we'll utilize
both the techniques in our AI script to maximize the potential of our AI.

Enemy and Friendly AIs

[70]

Finite state machines
Finite state machines are one of the most common AI systems used throughout
computer programming. To define the term itself, a finite state machine breaks
down to a system, which controls an object that has a limited number of states
to exist in. Some real-world examples of a finite state machine are traffic lights,
television, and a computer. Let's look at an example of a computer finite state
machine to get a better understanding.

A computer can be in various states. To keep it simple, we will list three main states.
These states are On, Off, and Active. The Off state is when the computer does not
have power running it, the On state is when the computer does have power running it,
and the Active state is when someone is using the computer. Let's take a further look
into our computer finite state machine and explore the functions of each of its states:

State Functions
On • Can be used by anyone

• Can turn off the computer
Off • Can turn on the computer

• Computer parts can be operated on
Active • Can access the Internet and various programs

• Can communicate with other devices
• Can turn off the computer

Each state has its own functions. Some of the functions of each state affect each
other, while some do not. The functions that do affect each other are the functions
that control what state the finite state machine is in. If you press the power button
on your computer, it will turn on and change the state of your computer to On. While
the state of your computer is On, you can use the Internet and possibly some other
programs, or communicate to other devices such as a router or printer. Doing so
will change the state of your computer to Active. When you are using the computer,
you can also turn off the computer by its software or by pressing the power button,
therefore changing the state to Off.

In video games, you can use a finite state machine to create AI with a simple logic.
You can also combine finite state machines with other types of AI systems to create a
unique and perhaps more complex AI system. In this chapter, we will be using finite
state machines as well as what is known as a behavior tree.

Chapter 5

[71]

The behavior tree form of the AI system
A behavior tree is another kind of AI system that works in a very similar way to
finite state machines. Actually, behavior trees are made up of finite state machines
that work in a hierarchical system. This system of hierarchy gives us great control
over an individual, and perhaps many finite state systems within the behavior tree,
allowing us to have a complex AI system.

Taking a look back at the table explaining a finite state machine, a behavior tree
works the same way. Instead of states, you have behaviors, and in place of the state
functions, you have various finite state machines that determine what is done while
the AI is in a specific behavior. Let's take a look at the behavior tree that we will be
using in this chapter to create our AI:

On the left-hand side, we have four behaviors: Idle, Guard, Combat, and Flee.
To the right are the finite state machines that make up each of the behaviors. Idle
and Flee only have one finite state machine, while Guard and Combat have multiple.
Within the Combat behavior, two of its finite state machines even have a couple of
their own finite state machines.

Enemy and Friendly AIs

[72]

As you can see, this hierarchy-based system of finite state machines allows us to use
a basic form of logic to create an even more complex AI system. At the same time,
we are also getting a lot of control by separating our AI into various behaviors. Each
behavior will run its own silo of code, oblivious to the other behaviors. The only time
we want a behavior to notice another behavior is either when an internal or external
action occurs that forces the behavior of our AI to change.

Combining the techniques
In this chapter, we will take both of the AI techniques and combine them to create
a great AI package. Our behavior tree will utilize finite state machines to run the
individual behaviors, creating a unique and complex AI system. This AI package
can be used for an enemy AI as well as a friendly AI.

Let's start scripting!
Now, let's begin scripting our AI! To start off, create a new C# file and name it
AI_Agent. Upon opening it, delete any functions within the main class, leaving
it empty. Just after the using statements, add this enum to the script:

public enum Behaviors {Idle, Guard, Combat, Flee};

This enum will be used throughout our script to determine what behavior our AI is
in. Now let's add it to our class. It is time to declare our first variable:

public Behaviors aiBehaviors = Behaviors.Idle;

This variable, aiBehaviors, will be the deciding factor of what our AI does. Its main
purpose is to have its value checked and changed when needed. Let's create our first
function, which will utilize one of this variable's purposes:

void RunBehaviors()
{
 switch(aiBehaviors)
 {
 case Behaviors.Idle:
 RunIdleNode();
 break;
 case Behaviors.Guard:
 RunGuardNode();
 break;
 case Behaviors.Combat:
 RunCombatNode();
 break;
 case Behaviors.Flee:

Chapter 5

[73]

 RunFleeNode();
 break;
 }
}

What this function will do is check the value of our aiBehaviors variable in a switch
statement. Depending on what the value is, it will then call a function to be used
within that behavior. This function is actually going to be a finite state machine,
which will decide what that behavior does at that point. Now, let's add another
function to our script, which will allow us to change the behavior of our AI:

void ChangeBehavior(Behaviors newBehavior)
{
 aiBehaviors = newBehavior;

 RunBehaviors();

}

As you can see, this function works very similarly to the RunBehaviors function.
When this function is called, it will take a new behaviors variable and assign its
value to aiBehaviors. By doing this, we changed the behavior of our AI. Now let's
add the final step to running our behaviors; for now, they will be empty functions
that act as placeholders for our internal and external actions. Add these functions to
the script:

void RunIdleNode()
{

}

void RunGuardNode()
{

}

void RunCombatNode()
{

}

void RunFleeNode()
{

}

Enemy and Friendly AIs

[74]

Each of these functions will run the finite state machines that make up the behaviors.
These functions are essentially a middleman between the behavior and the behavior's
action. Using these functions is the beginning of having more control over our
behaviors, something that can't be done with a simple finite state machine.

Internal and external actions
The actions of a finite state machine can be broken up into internal and external
actions. Separating the actions into the two categories makes it easier to define what
our AI does in any given situation. The separation is helpful in the planning phase
of creating AI, but it can also help in the scripting part as well, since you will know
what will and will not be called by other classes and GameObjects. Another way this
separation is beneficial is that it eases the work of multiple programmers working
on the same AI; each programmer could work on separate parts of the AI without
as many conflicts.

External actions
External actions are functions and activities that are activated when objects outside of
the AI object act upon the AI object. Some examples of external actions include being
hit by a player, having a spell being cast upon the player, falling from heights, losing
the game by an external condition, communicating with external objects, and so on.

The external actions that we will be using for our AI are:

• Changing its health
• Raising a stat
• Lowering a stat
• Killing the AI

Internal actions
Internal actions are the functions and activities that the AI runs within itself.
Examples of these are patrolling a set path, attacking a player, running away from
the player, using items, and so on. These are all actions that the AI will choose to do
depending on a number of conditions.

Chapter 5

[75]

The internal actions that we will be using for our AI are:

• Patrolling a path
• Attacking a player
• Fleeing from a player
• Searching for a player

Scripting the actions
It's time to add some internal and external actions to the script. First, be sure to add
the using statement to the top of your script with the other using statements:

using System.Collections.Generic;

Now, let's add some variables that will allow us to use the actions:

public bool isSuspicious = false;
public bool isInRange = false;
public bool FightsRanged = false;
public List<KeyValuePair<string, int>> Stats = new
List<KeyValuePair<string, int>>();
public GameObject Projectile;

The first three of our new variables are conditions to be used in finite state
machines to determine what function should be called. Next, we have a list of the
KeyValuePair variables, which will hold the stats of our AI GameObject. The last
variable is a GameObject, which is what we will use as a projectile for ranged attacks.

Remember the empty middleman functions that we previously created? Now with
these new variables, we will be adding some code to each of them. Add this code so
that the empty functions are now filled:

void RunIdleNode()
{
 Idle();
}

void RunGuardNode()
{
 Guard();
}

void RunCombatNode()
{
 if(FightsRanged)

Enemy and Friendly AIs

[76]

 RangedAttack();
 else
 MeleeAttack();
}

void RunFleeNode()
{
 Flee();
}

Two of the three boolean variables we just created are being used as conditionals
to call different functions, effectively creating finite state machines. Next, we will
be adding the rest of our actions; these are what is being called by the middleman
functions. Some of these functions will be empty placeholders, but will be filled later
on in the chapter:

void Idle()
{
}

void Guard()
{
 if(isSuspicious)
 {
 SearchForTarget();
 }
 else
 {
 Patrol();
 }
}

void Combat()
{
 if(isInRange)
 {
 if(FightsRanged)
 {
 RangedAttack();
 }
 else
 {
 MeleeAttack();
 }
 }

Chapter 5

[77]

 else
 {
 SearchForTarget();
 }
}

void Flee()
{
}

void SearchForTarget()
{
}

void Patrol()
{
}

void RangedAttack()
{
 GameObject newProjectile;
 newProjectile = Instantiate(Projectile, transform.position,
Quaternion.identity) as GameObject;
}

void MeleeAttack()
{
}

In the Guard function, we check to see whether the AI notices the player or not.
If it does, then it will proceed to search for the player; if not, then it will continue to
patrol along its path. In the Combat function, we first check to see whether the player
is within the attacking range; if not, then the AI searches again. If the player is within
the attacking range, we check to see whether the AI prefers attacking up close or
far away.

For ranged attacks, we first create a new, temporary GameObject variable. Then,
we set it to an instantiated clone of our Projectile GameObject. From here, the
projectile will run its own scripts to determine what it does. This is how we allow
our AI to attack the player from a distance.

Enemy and Friendly AIs

[78]

To finish off our actions, we have two more functions to add. The first one will be to
change the health of the AI, which is as follows:

void ChangeHealth(int Amount)
{
 if(Amount < 0)
 {
 if(!isSuspicious)
 {
 isSuspicious = true;
 ChangeBehavior(Behaviors.Guard);
 }
 }
 for(int i = 0; i < Stats.Capacity; i++)
 {
 if(Stats[i].Key == "Health")
 {
 int tempValue = Stats[i].Value;
 Stats[i] = new KeyValuePair<string, int>(Stats[i].Key, tempValue
+= Amount);
 if(Stats[i].Value <= 0)
 {
 Destroy(gameObject);
 }
 else if(Stats[i].Value < 25)
 {
 isSuspicious = false;
 ChangeBehavior(Behaviors.Flee);
 }
 break;
 }
 }
}

This function takes an int variable, which is the amount by which we want to
change the health of the player. The first thing we do is check to see if the amount
is negative; if it is, then we make our AI suspicious and change the behavior
accordingly. Next, we search for the health stat in our list and set its value to a new
value that is affected by the Amount variable. We then check if the AI's health is
below zero to kill it; if not, then we also check if its health is below 25. If the health
is that low, we make our AI flee from the player.

Chapter 5

[79]

To finish off our actions, we have one last function to add. It will allow us to affect a
specific stat of the AI. These modifications will either add to or subtract from a stat.
The modifications can be permanent or restored anytime. For the following instance,
the modifications will be permanent:

void ModifyStat(string Stat, int Amount)
{
 for(int i = 0; i < Stats.Capacity; i++)
 {
 if(Stats[i].Key == Stat)
 {
 int tempValue = Stats[i].Value;
 Stats[i] = new KeyValuePair<string, int>(Stats[i].Key, tempValue
+= Amount);
 break;
 }
 }
 if(Amount < 0)
 {
 if(!isSuspicious)
 {
 isSuspicious = true;
 ChangeBehavior(Behaviors.Guard);
 }
 }
}

This function takes a string and an integer. The string is used to search for the specific
stat that we want to affect and the integer is how much we want to affect that stat by.
It works in a very similar way to how the ChangeHealth function works, except
that we first search for a specific stat. We also check to see if the amount is negative.
This time, if it is negative, we change our AI behavior to Guard. This seems to be an
appropriate response for the AI after being hit by something that negated one of
its stats!

Pathfinding
Pathfinding is how the AI will maneuver around the level. For our AI package, we will
be using two different kinds of pathfinding, NavMesh and waypoints. The waypoint
system is a common approach to create paths for AI to move around the game level.
To allow our AI to move through our level in an intelligent manner, we will use
Unity's NavMesh component.

Enemy and Friendly AIs

[80]

Creating paths using the waypoint system
Using waypoints to create paths is a common practice in game design, and it's
simple too. To sum it up, you place objects or set locations around the game world;
these are your waypoints. In the code, you will place all of your waypoints that you
created in a container of some kind, such as a list or an array. Then, starting at the
first waypoint, you tell the AI to move to the next waypoint. Once that waypoint
has been reached, you send the AI off to another one, ultimately creating a system
that iterates through all of the waypoints, allowing the AI to move around the game
world through the set paths. Although using the waypoint system will grant our AI
movement in the world, at this point, it doesn't know how to avoid obstacles that it
may come across. That is when you need to implement some sort of mesh navigation
system so that the AI won't get stuck anywhere.

Unity's NavMesh system
The next step in creating AI pathfinding is to create a way for our AI to navigate
through the game world intelligently, meaning that it does not get stuck anywhere.
In just about every game out there that has a 3D-based AI, the world it inhabits has
all sorts of obstacles. These obstacles could be plants, stairs, ramps, boxes, holes, and
so on. To get our AI to avoid these obstacles, we will use Unity's NavMesh system,
which is built into Unity itself.

Setting up the environment
Before we can start creating our pathfinding system, we need to create a level for
our AI to move around in. To do this, I am just using Unity primitive models such as
cubes and capsules. For the floor, create a cube, stretch it out, and squish it to make a
rectangle. From there, clone it several times so that you have a large floor made up
of cubes.

Next, delete a bunch of the cubes and move some others around. This will create
holes in our floor, which will be used and tested when we implement the NavMesh
system. To make the floor easy to see, I've created a material in green and assigned it
to the floor cubes.

Chapter 5

[81]

After this, create a few more cubes, make one really long and one shorter than
the previous one but thicker, and the last one will be used as a ramp. I've created
an intersection of the really long cube and the thick cube. Then, place the ramp
towards the end of the thick cube, giving access to the top of the cubes.

Our final step in creating our test environment is to add a few waypoints for our
AI. For testing purposes, create five waypoints in this manner. Place one in each
corner of the level and one in the middle. For the actual waypoints, use the capsule
primitive. For each waypoint, add a rigid body component. Name the waypoints as
Waypoint1, Waypoint2, Waypoint3, and so on. The name is not all that important for
our code; it just makes it easier to distinguish between waypoints in the inspector.
Here's what I made for my level:

Enemy and Friendly AIs

[82]

Creating the NavMesh
Now, we will create the navigation mesh for our scene. The first thing we will do is
select all of the floor cubes. In the menu tab in Unity, click on the Window option,
and then click on the Navigation option at the bottom of the dropdown; this will
open up the Navigation window. This is what you should be seeing right now:

By default, the OffMeshLink Generation option is not checked; be sure to check it.
What this does is create links at the edges of the mesh allowing it to communicate
with any other OffMeshLink nearby, creating a singular mesh. This is a handy tool
since game levels typically use more than one mesh as a floor.

The Scene filter will just show specific objects within the hierarchy view list.
Selecting all the objects will show all of your GameObjects. Selecting mesh renderers
will only show GameObjects that have the mesh renderer component. Then, finally,
if you select terrains, only terrains will be shown in the Hierarchy view list.

The Navigation Layer dropdown will allow you to set the area as either walkable,
not walkable, or jump accessible. Walkable areas typically refer to floors, ramps,
and so on. Non-walkable areas refer to walls, rocks, and other various obstacles.

Chapter 5

[83]

Next, click on the Bake tab next to the Object tab. You should see information that
looks like this:

For this chapter, I am leaving all the values at their defaults. The Radius property
is used to determine how close to the walls the navigation mesh will exist. Height
determines how much vertical space is needed for the AI agent to be able to walk
on the navigation mesh. Max Slope is the maximum angle that the AI is allowed to
travel on for ramps, hills, and so on. The Step Height property is used to determine
how high the AI can step up onto surfaces higher than the ground level.

For Generated Off Mesh Links, the properties are very similar to each other.
The Drop Height value is the maximum amount of space the AI can intelligently
drop down to another part of the navigation mesh. Jump Distance is the opposite
of Height; it determines how high the AI can jump up to another part of the
navigation mesh.

The Advanced options are to be used when you have a better understanding of the
NavMesh component and want a little more out of it. Here, you can further tweak
the accuracy of the NavMesh as well as create Height Mesh to coincide with the
navigation mesh.

Enemy and Friendly AIs

[84]

Now that you know all the basics of the Unity NavMesh, let's go ahead and create
our navigation mesh. At the bottom-right corner of the Navigation tab in the
Inspector window, you should see two buttons: one that says Clear and the other
that says Bake. Click on the Bake button now to create your new navigation mesh.

Select the ramp and the thick cube that we created earlier. In the Navigation
window, make sure that the OffMeshLink Generation option is not checked,
and that Navigation Layer is set to Default. If the ramp and the thick cube are not
selected, reselect the floor cubes so that you have the floors, ramp, and thick wall
selected. Bake the navigation mesh again to create a new one. This is what my scene
looks like now with the navigation mesh:

You should be able to see the newly generated navigation mesh overlaying the
underlying mesh. This is what was created using the default Bake properties.
Changing the Bake properties will give you different results, which will come
down to what kind of navigation mesh you want the AI to use. Now that we have
a navigation mesh, let's create the code for our AI to utilize. First, we will code the
waypoint system, and then we will code what is needed for the NavMesh system.

Chapter 5

[85]

Adding our variables
To start our navigation system, we will need to add a few variables first. Place these
with the rest of our variables:

public Transform[] Waypoints;
public int curWaypoint = 0;
bool ReversePath = false;
NavMeshAgent navAgent;
Vector3 Destination;
float Distance;

The first variable is an array of Transforms; this is what we will use to hold our
waypoints. Next, we have an integer that is used to iterate through our Transform
array. We have a bool variable, which will decide how we should navigate through
the waypoints.

The next three variables are more oriented towards our navigation mesh that we
created earlier. The NavMeshAgent object is what we will reference when we want to
interact with the navigation mesh. The destination will be the location that we want
the AI to move towards. The distance is what we will use to check how far away we
are from that location.

Scripting the navigation functions
Previously, we created many empty functions; some of these are dependent
on pathfinding. Let's start with the Flee function. Add this code to replace the
empty function:

void Flee()
{
 for(int fleePoint = 0; fleePoint < Waypoints.Length; fleePoint++)
 {
 Distance = Vector3.Distance(gameObject.transform.position,
Waypoints[fleePoint].position);
 if(Distance > 10.00f)
 {
 Destination = Waypoints[curWaypoint].position;
 navAgent.SetDestination(Destination);
 break;
 }
 else if(Distance < 2.00f)
 {
 ChangeBehavior(Behaviors.Idle);
 }
 }
}

Enemy and Friendly AIs

[86]

What this for loop does is pick a waypoint that has Distance of more than 10. If it
does, then we set the Destination value to the current waypoint and move the AI
accordingly. If the distance from the current waypoint is less than 2, we change the
behavior to Idle.

The next function that we will adjust is the SearchForTarget function. Add the
following code to it, replacing its previous emptiness:

void SearchForTarget()
{
 Destination = GameObject.FindGameObjectWithTag("Player").transform.
position;
 navAgent.SetDestination(Destination);
 Distance = Vector3.Distance(gameObject.transform.position,
Destination);
 if(Distance < 10)
 ChangeBehavior(Behaviors.Combat);
}

This function will now be able to search for a target, the Player target to be more
specific. We set Destination to the player's current position, and then move the AI
towards the player. When Distance is less than 10, we set the AI behavior to Combat.

Now that our AI can run from the player as well as chase them down, let's utilize the
waypoints and create paths for the AI. Add this code to the empty Patrol function:

void Patrol()
{
 Distance = Vector3.Distance(gameObject.transform.position,
Waypoints[curWaypoint].position);
 if(Distance > 2.00f)
 {
 Destination = Waypoints[curWaypoint].position;
 navAgent.SetDestination(Destination);
 }
 else
 {
 if(ReversePath)
 {
 if(curWaypoint <= 0)
 {
 ReversePath = false;
 }

Chapter 5

[87]

 else
 {
 curWaypoint--;
 Destination = Waypoints[curWaypoint].position;
 }
 }
 else
 {
 if(curWaypoint >= Waypoints.Length - 1)
 {
 ReversePath = true;
 }
 else
 {
 curWaypoint++;
 Destination = Waypoints[curWaypoint].position;
 }
 }
 }
}

What Patrol will now do is check the Distance variable. If it is far from the
current waypoint, we set that waypoint as the new destination of our AI. If the
current waypoint is close to the AI, we check the ReversePath Boolean variable.
When ReversePath is true, we tell the AI to go to the previous waypoint, going
through the path in the reverse order. When ReversePath is false, the AI will go
on to the next waypoint in the list of waypoints.

With all of this completed, you now have an AI with pathfinding abilities. The AI
can also patrol a path set by waypoints and reverse the path when the end has been
reached. We have also added abilities for the AI to search for the player as well as
flee from the player.

Character animations
Animations are what bring the characters to life visually in the game. From basic
animations to super realistic movements, all the animations are important and really
represent what scripters do to the player. Before we add animations to our AI, we
first need to get a model mesh for it!

Enemy and Friendly AIs

[88]

Importing the model mesh
For this chapter, I am using a model mesh that I got from the Unity Asset Store.
To use the same model mesh that I am using, go to the Unity Asset Store and
search for Skeletons Pack. It is a package of four skeleton model meshes that are
fully textured, propped, and animated. The asset itself is free and great to use.

When you import the package into Unity, it will come with all four models as well
as their textures, and an example scene named ShowCase. Open that scene and you
should see the four skeletons. If you run the scene, you will see all the skeletons
playing their idle animations.

Choose the skeleton you want to use for your AI; I chose skeletonDark for mine.
Click on the drop-down list of your skeleton in the Hierarchy window, and then on
the Bip01 drop-down list. Then, select the magicParticle object. For our AI, we will
not need it, so delete it from the Hierarchy window.

Create a new prefab in the Project window and name it Skeleton. Now select the
skeleton that you want to use from the Hierarchy window and drag it onto the
newly created prefab. This will now be the model that you will use for this chapter.

In your AI test scene, drag and drop Skeleton Prefab onto the scene. I have
placed mine towards the center of the level, near the waypoint in the middle.
In the Inspector window, you will be able to see the Animation component
full of animations for the model.

Now, we will need to add a few components to our skeleton. Go to the Components
menu on the top of the Unity window, select Navigation, and then select NavMesh
Agent. Doing this will allow the skeleton to utilize the NavMesh we created earlier.
Next, go into the Components menu again and click on Capsule Collider as well
as Rigidbody. Your Inspector window should now look like this after adding
the components:

Chapter 5

[89]

Enemy and Friendly AIs

[90]

Your model now has all the necessary components needed to work with our
AI script.

Scripting the animations
To script our animations, we will take a simple approach to it. There won't be a lot of
code to deal with, but we will spread it out in various areas of our script where we
need to play the animations. In the Idle function, add this line of code:

animation.Play("idle");

This simple line of code will play the idle animation. We use animation to access the
model's animation component, and then use the Play function of that component to
play the animation. The Play function can take the name of the animation to call the
correct animation to be played; for this one, we call the idle animation.

In the SearchForTarget function, add this line of code to the script:

animation.Play("run");

We access the same function of the animation component and call the run animation
to play here. Add the same line of code to the Patrol function as well, since we will
want to use that animation for that function too.

In the RangedAttack and MeleeAttack functions, add this code:

animation.Play("attack");

Here, we call the attack animation. If we had a separate animation for ranged
attacks, we would use that instead, but since we don't, we will utilize the same
animation for both attack types. With this, we finished coding the animations into
our AI. It will now play those animations when they are called during gameplay.

Putting it all together
To wrap up our AI package, we will now finish up the script and add it to
the skeleton.

Chapter 5

[91]

Final coding touches
At the beginning of our AI script, we created some variables that we have yet to
properly assign. We will do that in the Start function. We will also add the Update
function to run our AI code. Add these functions to the bottom of the class:

void Start()
{
 navAgent = GetComponent<NavMeshAgent>();

 Stats.Add(new KeyValuePair<string, int>("Health", 100));
 Stats.Add(new KeyValuePair<string, int>("Speed", 10));
 Stats.Add(new KeyValuePair<string, int>("Damage", 25));
 Stats.Add(new KeyValuePair<string, int>("Agility", 25));
 Stats.Add(new KeyValuePair<string, int>("Accuracy", 60));
}

void Update ()
{
 RunBehaviors();
}

In the Start function, we first assign the navAgent variable by getting
the NavMeshAgent component from the GameObject. Next, we add new
KeyValuePair variables to the Stats array. The Stats array is now filled
with a few stats that we created.

The Update function calls the RunBehaviors function. This is what will keep the
AI running; it will run the correct behavior as long as the AI is active.

Filling out the inspector
To complete the AI package, we will need to add the script to the skeleton, so drag
the script onto the skeleton in the Hierarchy window. In the Size property of the
waypoints array, type the number 5 and open up the drop-down list. Starting with
Element 0, drag each of the waypoints into the empty slots.

Enemy and Friendly AIs

[92]

For the projectile, create a sphere GameObject and make it a prefab. Now, drag
it onto the empty slot next to Projectile. Finally, set the AI Behaviors to Guard.
This will make it so that when you start the scene, your AI will be patrolling.
The Inspector window of the skeleton should look something like this:

Chapter 5

[93]

Your AI is now ready for gameplay! To make sure everything works, we will need to
do some playtesting.

Playtesting
A great way to playtest the AI is to play the scene in every behavior. Start off with
Guard, then run it in Idle, Combat, and Flee. For different outputs, try adjusting
some of the variables in the NavMesh Agent component, such as Speed, Angular
Speed, and Stopping Distance. Try mixing your waypoints around so the path
is different.

Summary
In this chapter, you learned how to create an AI package. We explored a couple of
techniques to handle AI, such as finite state machines and behavior trees. Then, we
dived into AI actions, both internal and external. From there, we figured out how to
implement pathfinding with both a waypoint system and Unity's NavMesh system.
Finally, we topped the AI package off with animations and put everything together,
creating our finalized AI.

In the next chapter, you will learn how to create a stat tracking system. To do this,
we will add stats and attributes to the player and enemies. Then, we will track stats
for both the player and enemies. We will also add an achievement system for some
of the stats.

Keeping Score
In many games, having stats and scores are a way of showing the players how far
along they've come. For some games, stats decide whether players win or lose the
game or rounds they play. There are some games where stats create competition
such as a high score table in a racing game, or a ranking system in a first-person
shooter game. Stats can be used in many ways. They can influence a player to do
things they normally wouldn't do, just to get that stat.

In this chapter, we will:

• Create stats for the player
• Implement those stats in our scripts
• Create a stat tracker for the stats
• Create an achievement system
• Use PlayerPrefs to save our stats
• Use GUI methods to show the stats and achievements
• Create/assign the stats

Before we implement our stats, we need to figure out what stats we want to keep
track of. This is a rudimentary yet an important step.

Prototype stats
Now let's figure out which stats we want to keep track of! In this book, the game we
create will have a gladiator arena-styled gameplay. So we will have rounds where
the player will fight enemies. To win a round, the player will need to kill all of the
enemies; to lose a round, the enemies will have to kill the player.

Keeping Score

[96]

Here's a list of stats that we want to track:

• Kills
• Deaths
• Total gold
• Current gold
• Gold spent
• Level
• Rounds won
• Rounds lost
• Kill-death ratio
• Win-lose ratio
• Time played

Assigning the stats to the player
Now that we know what stats we want to track in our game, let's start our script.
Create a new C# script and name it StatTracker. Next, let's add our variables to it;
these will be the stats that we track:

int pKills = 0;
int pDeaths = 0;
int pTotalGold = 0;
int pCurrentGold = 0;
int pGoldSpent = 0;
int pLevel = 1;
int pRoundsWon = 0;
int pRoundsLost = 0;
float pKDR = 0.00f;
float pWLR = 0.00f;
float pTimePlayed = 0.00f;

As you can see, the variable names are preceded by the letter p, which, in this
instance, will mean that these variables are for the player. Most of our stats are being
tracked as int variables; the last few are float. These are the variables that we will
modify, save, and reset in our script.

Chapter 6

[97]

The stat tracker
Our next step is to give our stat tracker all the functionalities that we need. Here,
we will create methods to set and reset stats, set and reset PlayerPrefs, and save
PlayerPrefs. Finally, we create a way to show our stats on the screen. Playerprefs
are functions built in Unity that allow storage of strings, integers, and floats using a
system similar to Dictionary or KeyValuePair.

Setting the stats
The first function that we will create will allow us to set values to specific stats.
Add this function to your script:

void SetStat(string stat, int intValue = 0)
{
 switch(stat)
 {
 case "Kills":
 pKills+= intValue;

 float fKills = pKills;
 float fDeaths = pDeaths;
 if(fKills != 0)
 pKDR = fDeaths / fKills;
 break;
 case "Deaths":
 pDeaths+= intValue;

 float fKills2 = pKills;
 float fDeaths2 = pDeaths;
 if(fKills2 != 0)
 pKDR = fDeaths2 / fKills2;
 break;
 case "TotalGold":
 pTotalGold+= intValue;
 break;
 case "CurrentGold":
 pCurrentGold+= intValue;
 break;
 case "GoldSpent":
 pGoldSpent+= intValue;
 break;

Keeping Score

[98]

 case "Level":
 pLevel+= intValue;
 break;
 case "RoundsWon":
 pRoundsWon+= intValue;

 float fWins = pRoundsWon;
 float fLosses = pRoundsLost;
 if(fWins != 0)
 pWLR = fLosses / fWins;
 break;
 case "RoundsLost":
 pRoundsLost+= intValue;

 float fWins2 = pRoundsWon;
 float fLosses2 = pRoundsLost;
 if(fWins2 != 0)
 pWLR = fLosses2 / fWins2;
 break;
 case "TimePlayed":
 pTimePlayed+= fltValue;
 break;
 }
}

What this function does is to first take two parameters, the stat we want to modify
and an integer value. The integer is set to 0 by default; this is to help avoid possible
errors. Next, we run a switch statement based on the stat string that we passed to
decide which of our stats we want to modify.

Kills, deaths, rounds won, and rounds lost have some unique properties. When we
set them, we add the new value to the stat, and then we calculate a ratio. When we
set kills and deaths, we also do a bit of math to assign the kill-death ratio stat.
For rounds won and lost, we also set the rounds won-lost ratio.

Resetting the stats
To reset our stats, we will add a basic but important function to our script,
shown as follows:

void ResetStats()
{
 pKills = 0;
 pDeaths = 0;

Chapter 6

[99]

 pTotalGold = 0;
 pCurrentGold = 0;
 pGoldSpent = 0;
 pLevel = 1;
 pRoundsWon = 0;
 pRoundsLost = 0;
 pKDR = 0.00f;
 pWLR = 0.00f;
 pTimePlayed = 0.00f;
}

When this function is called, it will reset all of our stats to their base value.
This value is 0 for everything but the player's level, which is 1. If we wanted
to reset a specific stat to its base value, we can call the previous function that
we created, which is SetStat.

Resetting all of our prefs
To save our stats, we will use Unity's PlayerPrefs. These are a handy way to
save small bits of data. They can be used across several platforms and are easy
to use. Our first function that we'll create will let us reset our PlayerPrefs value.
Add this function to the script:

void ResetAllPrefs()
{
 PlayerPrefs.SetInt("PlayerKills", 0);
 PlayerPrefs.SetInt("PlayerDeaths", 0);
 PlayerPrefs.SetInt("PlayerTotalGold", 0);
 PlayerPrefs.SetInt("PlayerCurrentGold", 0);
 PlayerPrefs.SetInt("PlayerGoldSpent", 0);
 PlayerPrefs.SetInt("PlayerLevel", 0);
 PlayerPrefs.SetInt("PlayerRoundsWon", 0);
 PlayerPrefs.SetInt("PlayerRoundsLost", 0);
 PlayerPrefs.SetFloat("PlayerKDR", 0.00f);
 PlayerPrefs.SetFloat("PlayerWLR", 0.00f);
 PlayerPrefs.SetFloat("PlayerTimePlayed", 0.00f);
 PlayerPrefs.Save();
}

What this function does is set each PlayerPref value to its base value.
When they are all reset, we call a native Save function within PlayerPrefs
to save our new values.

Keeping Score

[100]

Saving all of our prefs
The next function that we will create will allow us to save all of our PlayerPrefs
values. This will be done in a similar way to how we reset all PlayerPrefs.
Let's add this new function now:

void SaveAllPrefs()
{
 PlayerPrefs.SetInt("PlayerKills", pKills);
 PlayerPrefs.SetInt("PlayerDeaths", pDeaths);
 PlayerPrefs.SetInt("PlayerTotalGold", pTotalGold);
 PlayerPrefs.SetInt("PlayerCurrentGold", pCurrentGold);
 PlayerPrefs.SetInt("PlayerGoldSpent", pGoldSpent);
 PlayerPrefs.SetInt("PlayerLevel", pLevel);
 PlayerPrefs.SetInt("PlayerRoundsWon", pRoundsWon);
 PlayerPrefs.SetInt("PlayerRoundsLost", pRoundsLost);
 PlayerPrefs.SetFloat("PlayerKDR", pKDR);
 PlayerPrefs.SetFloat("PlayerWLR", pWLR);
 PlayerPrefs.SetFloat("PlayerTimePlayed", pTimePlayed);
 PlayerPrefs.Save();
}

This function is essentially the same as the ResetAllPrefs function, except we
change the value at which we assign PlayerPrefs. We assign all of the PlayerPrefs
functions their appropriate stats, and then at the end of the function, we save the
PlayerPrefs values.

Setting a specific pref
To set a specific pref, we will create a function similar to how we set a specific stat.
Add this function to the script:

void SetPref(string Pref, int intValue = 0, float fltValue = 0.00f)
{
 if(intValue != 0)
 {
 if(PlayerPrefs.HasKey(Pref))
 PlayerPrefs.SetInt(Pref, intValue);
 }
 if(fltValue != 0.00f)
 {
 if(PlayerPrefs.HasKey(Pref))
 PlayerPrefs.SetFloat(Pref, fltValue);
 }

 PlayerPrefs.Save();
}

Chapter 6

[101]

This function will take the PlayerPref function we want to set and also a value that
we want to set it to. Inside the function, we will check to see which value is not set to
0. If one of the values are still 0, we ignore that value type. If one of the values is not
0, we check to see whether the PlayerPref function passed to the function exists.
If that function exists, we then set the PlayerPref value accordingly and finish off
by saving our PlayerPrefs values.

Resetting a specific pref
What if you wanted to reset a specific PlayerPref value? For this, we will create
a slightly different function that will allow us to do that. Add this new function
to our script:

void ResetPref(string Pref)
{
 switch(Pref)
 {
 case "Kills":
 PlayerPrefs.SetInt("PlayerKills", 0);
 break;
 case "Deaths":
 PlayerPrefs.SetInt("PlayerDeaths", 0);
 break;
 case "TotalGold":
 PlayerPrefs.SetInt("PlayerTotalGold", 0);
 break;
 case "CurrentGold":
 PlayerPrefs.SetInt("PlayerCurrentGold", 0);
 break;
 case "GoldSpent":
 PlayerPrefs.SetInt("PlayerGoldSpent", 0);
 break;
 case "Level":
 PlayerPrefs.SetInt("PlayerLevel", 0);
 break;
 case "RoundsWon":
 PlayerPrefs.SetInt("PlayerRoundsWon", 0);
 break;
 case "RoundsLost":
 PlayerPrefs.SetInt("PlayerRoundsLost", 0);
 break;
 case "KDR":
 PlayerPrefs.SetFloat("PlayerKDR", 0.00f);
 break;
 case "WLR":
 PlayerPrefs.SetFloat("PlayerWLR", 0.00f);
 break;

Keeping Score

[102]

 case "TimePlayed":
 PlayerPrefs.SetFloat("PlayerTimePlayed", 0.00f);
 break;
 }

 PlayerPrefs.Save();
}

For this function, we pass one variable that we want to reset, which is PlayerPref.
Then, we run a switch statement for the string that we passed to decide which
PlayerPref function to reset. After we reset PlayerPref, we save it.

Showing our stats on the screen
Our final step in creating our stats is to show them on the screen. To do this, we will
need to first add a couple of more variables:

public bool showStats = false;
public Rect statsRect = new Rect(Screen.width / 2, Screen.height / 2,
400, 400);

The new bool variable will decide whether we can show the stats menu, and the
Rect variable is the area in which the stats menu will be. Next, we will add the
OnGUI function that will draw our GUI on the screen:

void OnGUI()
{
 if(showStats)
 {
 statsRect = GUI.Window(0, statsRect, StatsGUI, "Stats");
 }
}

In the OnGUI function, we check the showStats Boolean variable to see whether
or not the stats menu will be seen on the screen. You can see that it calls a function
named StatsGUI. This function is what draws everything to the screen; let's add
that function now:

void StatsGUI(int ID)
{
 GUILayout.BeginArea(new Rect(15, 25, 400, 400));

 GUILayout.BeginVertical();
 GUILayout.Label("Level - " + pLevel);
 GUILayout.Label("Gold - " + pCurrentGold);

Chapter 6

[103]

 GUILayout.Label("Kills - " + pKills);
 GUILayout.Label("Deaths - " + pDeaths);
 GUILayout.Label("Kill/Death Ratio - " + pKDR);
 GUILayout.Label("Rounds Won - " + pRoundsWon);
 GUILayout.Label("Rounds Loss - " + pRoundsLost);
 GUILayout.Label("Win/Loss Ratio - " + pWLR);
 GUILayout.Label("Time Played (in minutes) - " + (pTimePlayed /
60.00f));
 GUILayout.EndVertical();

 GUILayout.EndArea();
}

To draw our stats on the screen, we use labels to show some text as well as the
associating variables. For the Time Played stat, we divide it by 60 so it will show
how many minutes have passed. In Unity, time is tracked by seconds, so we show
minutes instead so that there isn't a large and possibly confusing number shown
to the player.

To give our script a quick test, create a new scene and place the script onto the
camera. Be sure to set the showStats Boolean variable to true in the Inspector
window. You should see this on your screen:

Each of the stats we wanted to track is now shown on the screen in a vertical list.
Later in this book, when we put everything together to finish our game, we will tie
this into our menu system.

Keeping Score

[104]

The achievement system
Achievements are being used now in just about every game out there. You can
see them across all genres and gaming platforms, achievements are everywhere.
They give the player a sense of pride and accomplishment, knowing that they did
something so much that they get rewarded for it. Achievements are also a way for
players to brag and show off what they've done in their game.

Prototyping the achievements
Similar to how we prototyped our stats, we will need to prototype the achievements.
The stats will be used to unlock achievements, but not every stat will have an
achievement for it. For this reason, we will have fewer achievements than stats,
but we will have different levels for each achievement.

Here's a list of the achievements that we will track:

• Kills
• Total gold
• Gold spent
• Level
• Rounds won
• Time played

Adding the required achievement variables
To get things started, create a new C# script and name it AchievementSystem.
Next, let's create our variables:

int achKills, achTotGold, achGoldSpnt, achLvl, achRndsW, achTime;
bool getKills, getTotGold, getGoldSpnt, getLvl, getRndsW, getTime;

The integer variables are what we will use to track which level the players are on
within that achievement. Achievement levels can be used to allow the player to
unlock further achievements of a specific stat. The bool variables will be used to
determine whether the player can continue to unlock more achievement levels of
a specific achievement.

Chapter 6

[105]

Resetting the achievements
The first function that we will add to our achievement system will allow us to reset
our achievements to a base value. Add this next function to the script:

void ResetAchievements()
{
 achKills = 0;
 achTotGold = 0;
 achGoldSpnt = 0;
 achLvl = 0;
 achRndsW = 0;
 achTime = 0;
 getKills = true;
 getTotGold = true;
 getGoldSpnt = true;
 getLvl = true;
 getRndsW = true;
 getTime = true;
}

Within the preceding function, we set all of our achievement level variables to 0
and the bool variables to true.

Achievement trackers
In this part of the chapter, we will add trackers for each of our achievements.
Each tracker will have its own function. The functions will be very similar to
each other, but will have their own variables to affect.

When the functions are called, it'll take in an integer; this integer is the amount of the
stat that we want to check. Within the function, we check with our bool variables to
see whether that achievement can still be gained. Next, we check the amount in order
to iterate the achievement level appropriately.

Once the achievement level is at its highest amount, we disable the ability to gain
more achievements for that skill.

Keeping Score

[106]

Tracking the kills
Our first tracker will track the player kills; let's add the tracker function now:

void Kills(int Amount)
{
 if(getKills)
 {
 if(Amount >= 10 && Amount < 49)
 {
 if(achKills != 1)
 achKills++;
 }
 if(Amount >= 50 && Amount < 99)
 {
 if(achKills != 2)
 achKills++;
 }
 if(Amount >= 100 && Amount < 249)
 {
 if(achKills != 3)
 achKills++;
 }
 if(Amount >= 250 && Amount < 499)
 {
 if(achKills != 4)
 achKills++;
 }
 if(Amount >= 500 && Amount < 999)
 {
 if(achKills != 5)
 achKills++;
 }
 if(Amount >= 1000)
 {
 if(achKills != 6)
 achKills = 6;
 }
 if(achKills == 6)
 getKills = false;
 }
}

Chapter 6

[107]

Tracking the gold total
The next tracker will track how much gold the player gained in the entire time they
played the game. Add this function to the script:

void TotalGold(int Amount)
{
 if(getTotGold)
 {
 if(Amount >= 100 && Amount < 249)
 {
 if(achTotGold != 1)
 achTotGold++;
 }
 if(Amount >= 250 && Amount < 499)
 {
 if(achTotGold != 2)
 achTotGold++;
 }
 if(Amount >= 500 && Amount < 999)
 {
 if(achTotGold != 3)
 achTotGold++;
 }
 if(Amount >= 1000 && Amount < 4999)
 {
 if(achTotGold != 4)
 achTotGold++;
 }
 if(Amount >= 5000 && Amount < 9999)
 {
 if(achTotGold != 5)
 achTotGold++;
 }
 if(Amount >= 10000)
 {
 if(achTotGold != 6)
 achTotGold = 6;
 }

 if(achTotGold == 6)
 getTotGold = false;
 }
}

Keeping Score

[108]

Tracking the gold spent
This tracker will track how much gold the player spent on items during the time they
played the game:

void GoldSpent(int Amount)
{
 if(getGoldSpnt)
 {
 if(Amount >= 100 && Amount < 249)
 {
 if(achGoldSpnt != 1)
 achGoldSpnt++;
 }
 if(Amount >= 250 && Amount < 499)
 {
 if(achGoldSpnt != 2)
 achGoldSpnt++;
 }
 if(Amount >= 500 && Amount < 999)
 {
 if(achGoldSpnt != 3)
 achGoldSpnt++;
 }
 if(Amount >= 1000 && Amount < 4999)
 {
 if(achGoldSpnt != 4)
 achGoldSpnt++;
 }
 if(Amount >= 5000 && Amount < 9999)
 {
 if(achGoldSpnt != 5)
 achGoldSpnt++;
 }
 if(Amount >= 10000)
 {
 if(achGoldSpnt != 6)
 achGoldSpnt = 6;
 }

 if(achGoldSpnt == 6)
 getGoldSpnt = false;
 }
}

Chapter 6

[109]

Tracking the player's level
This will track the player's level in the game. A player can increase their level in any
way you wish within the game:

void Level(int Amount)
{
 if(getLvl)
 {
 if(Amount >= 5 && Amount < 9)
 {
 if(achLvl != 1)
 achLvl++;
 }
 if(Amount >= 10 && Amount < 24)
 {
 if(achLvl != 2)
 achLvl++;
 }
 if(Amount >= 25 && Amount < 49)
 {
 if(achLvl != 3)
 achLvl++;
 }
 if(Amount >= 50 && Amount < 74)
 {
 if(achLvl != 4)
 achLvl++;
 }
 if(Amount >= 75 && Amount < 99)
 {
 if(achLvl != 5)
 achLvl++;
 }
 if(Amount >= 100)
 {
 if(achLvl != 6)
 achLvl = 6;
 }

 if(achLvl == 6)
 getLvl = false;
 }
}

Keeping Score

[110]

Tracking the rounds won
This will track how many rounds the player has won overall:

void RoundsWon(int Amount)
{
 if(getRndsW)
 {
 if(Amount >= 5 && Amount < 9)
 {
 if(achRndsW != 1)
 achRndsW++;
 }
 if(Amount >= 10 && Amount < 24)
 {
 if(achRndsW != 2)
 achRndsW++;
 }
 if(Amount >= 25 && Amount < 49)
 {
 if(achRndsW != 3)
 achRndsW++;
 }
 if(Amount >= 50 && Amount < 74)
 {
 if(achRndsW != 4)
 achRndsW++;
 }
 if(Amount >= 75 && Amount < 99)
 {
 if(achRndsW != 5)
 achRndsW++;
 }
 if(Amount >= 100)
 {
 if(achRndsW != 6)
 achRndsW = 6;
 }

 if(achRndsW == 6)
 getRndsW = false;
 }
}

Chapter 6

[111]

Tracking the time played
This tracker will track how long the player played the game. Unity tracks time in
seconds; we will track the time stat in minutes, so we will be dividing the time by 60:

void TimePlayed(float Amount)
{
 if(getTime)
 {
 float minutes = Amount / 60.00f;

 if(minutes >= 10.00f && minutes < 59.00f)
 {
 if(achTime != 1)
 achTime++;
 }
 if(minutes >= 60.00f && minutes < 119.00f)
 {
 if(achTime != 2)
 achTime++;
 }
 if(minutes >= 120.00f && minutes < 179.00f)
 {
 if(achTime != 3)
 achTime++;
 }
 if(minutes >= 180.00f && minutes < 239.00f)
 {
 if(achTime != 4)
 achTime++;
 }
 if(minutes >= 240.00f && minutes < 299.00f)
 {
 if(achTime != 5)
 achTime++;
 }
 if(minutes >= 300.00f)
 {
 if(achTime != 6)
 achTime = 6;
 }

 if(achTime == 6)
 getTime = false;
 }
 }

Keeping Score

[112]

Let's check the achievements
Next, we will add the functions that will actually check for achievements.
These are the functions we will call when we want to check whether the
player's stats have unlocked any achievements.

Checking a specific achievement
The CheckAchievement function will allow us to check for a single achievement.
It takes a string, which is the achievement to check for. From here, it runs a switch
statement to decide which achievement to modify. Add this function to your
script. This function can be used when loading a menu, which shows the player's
achievements and can be used to prevent unlocking the same achievement more
than once:

void CheckAchievement(string Achievement)
{
 switch(Achievement)
 {
 case "Kills":
 Kills(PlayerPrefs.GetInt("PlayerKills"));
 break;
 case "TotalGold":
 TotalGold(PlayerPrefs.GetInt("PlayerTotalGold"));
 break;
 case "GoldSpent":
 GoldSpent(PlayerPrefs.GetInt("PlayerGoldSpent"));
 break;
 case "Level":
 Level(PlayerPrefs.GetInt("PlayerLevel"));
 break;
 case "RoundsWon":
 RoundsWon(PlayerPrefs.GetInt("PlayerRoundsWon"));
 break;
 case "TimePlayed":
 TimePlayed(PlayerPrefs.GetFloat("PlayerTimePlayed"));
 break;
 }
}

Chapter 6

[113]

Checking all of the achievements
The CheckAllAchievements function will allow us to check all the achievements.
Let's add the function now:

void CheckAllAchievements()
{
 Kills(PlayerPrefs.GetInt("PlayerKills"));
 TotalGold(PlayerPrefs.GetInt("PlayerTotalGold"));
 GoldSpent(PlayerPrefs.GetInt("PlayerGoldSpent"));
 Level(PlayerPrefs.GetInt("PlayerLevel"));
 RoundsWon(PlayerPrefs.GetInt("PlayerRoundsWon"));
 TimePlayed(PlayerPrefs.GetFloat("PlayerTimePlayed"));

Displaying the achievements on screen
Just as we did with the stats, we will have a new menu for achievements.
First, we'll start by adding a couple of variables:

public bool showAchievements = false;
public Rect achRect = new Rect(Screen.width / 2, Screen.height / 2,
700, 700);

Adding the GUI functions
Now, we will add the functions to show the achievements on the screen.
The first function is the OnGUI function, which we will add now:

void OnGUI()
{
 if(showAchievements)
 {
 achRect = GUI.Window(0, achRect, AchGUI, "Achievements");
 }
}

Just as in the stats menu, we check whether we want to show the achievements
menu. If we do it, is shown on screen; if not, we hide it.

Next, we will add the AchGUI function that is being called in the OnGUI function.
This is a large function, but it will allow us to show the achievements that we need.
It is similar to the stat menu, except we will show buttons instead of a number.
We use buttons just as a proof of concept; normally, you would use an image for
your achievements.

Keeping Score

[114]

What this function will do is use a switch statement to check the level of each
achievement that we track. Then, it will show the number of achievement buttons
onscreen according to what level the player is at, within that achievement. Let's add
the new function now:

void AchGUI(int ID)
{
 GUILayout.BeginArea(new Rect(15, 25, 700, 700));

 GUILayout.BeginVertical();
 GUILayout.Label("Level");
 GUILayout.Label("Kills");
 GUILayout.Label("Total Gold");
 GUILayout.Label("Gold Spent");
 GUILayout.Label("Rounds Won");
 GUILayout.Label("Time Played");
 GUILayout.EndVertical();

 GUILayout.EndArea();

 GUILayout.BeginArea(new Rect(50, 25, 700, 700));

 GUILayout.BeginHorizontal();
 if(achLvl >= 1)
 GUILayout.Button("Level 1", GUILayout.Height(25), GUILayout.
Width(75));
 if(achLvl >= 2)
 GUILayout.Button("Level 2", GUILayout.Height(25), GUILayout.
Width(75));
 if(achLvl >= 3)
 GUILayout.Button("Level 3", GUILayout.Height(25), GUILayout.
Width(75));
 if(achLvl >= 4)
 GUILayout.Button("Level 4", GUILayout.Height(25), GUILayout.
Width(75));
 if(achLvl >=5)
 GUILayout.Button("Level 5", GUILayout.Height(25), GUILayout.
Width(75));
 if(achLvl >=6)
 GUILayout.Button("Level 6", GUILayout.Height(25), GUILayout.
Width(75));
 GUILayout.EndHorizontal();

 GUILayout.BeginHorizontal();

Chapter 6

[115]

 if(achKills >= 1)
 GUILayout.Button("Kills 1", GUILayout.Height(25), GUILayout.
Width(75));
 if(achKills >= 2)
 GUILayout.Button("Kills 2", GUILayout.Height(25), GUILayout.
Width(75));
 if(achKills >= 3)
 GUILayout.Button("Kills 3", GUILayout.Height(25), GUILayout.
Width(75));
 if(achKills >= 4)
 GUILayout.Button("Kills 4", GUILayout.Height(25), GUILayout.
Width(75));
 if(achKills >=5)
 GUILayout.Button("Kills 5", GUILayout.Height(25), GUILayout.
Width(75));
 if(achKills >=6)
 GUILayout.Button("Kills 6", GUILayout.Height(25), GUILayout.
Width(75));
 GUILayout.EndHorizontal();
 GUILayout.EndArea();

 GUILayout.BeginArea(new Rect(90, 80, 700, 700));
 GUILayout.BeginHorizontal();
 if(achTotGold >= 1)
 GUILayout.Button("Total Gold 1", GUILayout.Height(25),
GUILayout.Width(75));
 if(achTotGold >= 2)
 GUILayout.Button("Total Gold 2", GUILayout.Height(25),
GUILayout.Width(75));
 if(achTotGold >= 3)
 GUILayout.Button("Total Gold 3", GUILayout.Height(25),
GUILayout.Width(75));
 if(achTotGold >= 4)
 GUILayout.Button("Total Gold 4", GUILayout.Height(25),
GUILayout.Width(75));
 if(achTotGold >=5)
 GUILayout.Button("Total Gold 5", GUILayout.Height(25),
GUILayout.Width(75));
 if(achTotGold >=6)
 GUILayout.Button("Total Gold 6", GUILayout.Height(25),
GUILayout.Width(75));
 GUILayout.EndHorizontal();

 GUILayout.BeginHorizontal();

Keeping Score

[116]

 if(achGoldSpnt >= 1)
 GUILayout.Button("Gold Spent 1", GUILayout.Height(25),
GUILayout.Width(75));
 if(achGoldSpnt >= 2)
 GUILayout.Button("Gold Spent 2", GUILayout.Height(25),
GUILayout.Width(75));
 if(achGoldSpnt >= 3)
 GUILayout.Button("Gold Spent 3", GUILayout.Height(25),
GUILayout.Width(75));
 if(achGoldSpnt >= 4)
 GUILayout.Button("Gold Spent 4", GUILayout.Height(25),
GUILayout.Width(75));
 if(achGoldSpnt >=5)
 GUILayout.Button("Gold Spent 5", GUILayout.Height(25),
GUILayout.Width(75));
 if(achGoldSpnt >=6)
 GUILayout.Button("Gold Spent 6", GUILayout.Height(25),
GUILayout.Width(75));
 GUILayout.EndHorizontal();

 GUILayout.BeginHorizontal();
 if(achRndsW >= 1)
 GUILayout.Button("Rounds Won 1", GUILayout.Height(25),
GUILayout.Width(75));
 if(achRndsW >= 2)
 GUILayout.Button("Rounds Won 2", GUILayout.Height(25),
GUILayout.Width(75));
 if(achRndsW >= 3)
 GUILayout.Button("Rounds Won 3", GUILayout.Height(25),
GUILayout.Width(75));
 if(achRndsW >= 4)
 GUILayout.Button("Rounds Won 4", GUILayout.Height(25),
GUILayout.Width(75));
 if(achRndsW >=5)
 GUILayout.Button("Rounds Won 5", GUILayout.Height(25),
GUILayout.Width(75));
 if(achRndsW >=6)
 GUILayout.Button("Rounds Won 6", GUILayout.Height(25),
GUILayout.Width(75));
 GUILayout.EndHorizontal();

 GUILayout.BeginHorizontal();

Chapter 6

[117]

 if(achTime >= 1)
 GUILayout.Button("Time Played 1", GUILayout.Height(25),
GUILayout.Width(75));
 if(achTime >= 2)
 GUILayout.Button("Time Played 2", GUILayout.Height(25),
GUILayout.Width(75));
 if(achTime >= 3)
 GUILayout.Button("Time Played 3", GUILayout.Height(25),
GUILayout.Width(75));
 if(achTime >= 4)
 GUILayout.Button("Time Played 4", GUILayout.Height(25),
GUILayout.Width(75));
 if(achTime >=5)
 GUILayout.Button("Time Played 5", GUILayout.Height(25),
GUILayout.Width(75));
 if(achTime >=6)
 GUILayout.Button("Time Played 6", GUILayout.Height(25),
GUILayout.Width(75));
 GUILayout.EndHorizontal();

 GUILayout.EndArea();
}

For testing purposes, I made the achievement level variables public and set them to
various values. Drag the script onto the camera, remove the stats script, and set the
showAchievements Boolean value to true. If you run the scene, you should see the
following results:

You will probably have slightly different results, based on what you assigned each of
the achievement level variables.

Keeping Score

[118]

Playtesting
To playtest the stats and achievements GUI, you can change the values that show
on screen and make sure the correct values are shown on screen. Other than that,
you can call each of the functions individually in a Start function to make sure
that they work. To take this chapter a bit further, you can add stats to track as well
as show achievements for them. You can also replace the text in the achievements
with an image to better represent the achievements; this would be a nice finishing
touch to them.

Summary
In this chapter, you learned how to track stats, save them, and show them in a GUI
menu. To track the stats, we created interactive functions to modify them. During the
creation of the stat saving script, you learned about what PlayerPref function are
and how to use them. You also learned how to keep track of achievements and show
them on a GUI menu as well.

In the next chapter, you will learn how to add the save game functionality to your
game. To save the game data, we will create two methods, allowing the player to
save the game anytime they want and allowing the game to use checkpoint saving.
We will also save using XML files as well as text files.

Creating Save and
Load Systems

Saving data within a game is very important, which can be seen in just about every
game out there. There is all kinds of data that you might want to keep track of, not
only for yourself, but also for the player. The player's inventory, enemies' position,
the player's statistics, and a lot more can be saved and loaded from a file that you
create. In Unity, there are several ways to save data that you can choose from. Earlier
in this book, we already went over how to use PlayerPrefs to save and load data.
In this chapter, you will learn how to use XML and custom flat files, and then create
a way to activate your saving and loading processes.

In this chapter, you will:

• Save data to a flat file
• Load data from a flat file
• Customize our flat file
• Save data to an XML file
• Load data from an XML file
• Implement a checkpoint-based system
• Implement an anywhere/anytime saving system

Creating Save and Load Systems

[120]

Saving data with flat files
The first and more common way to save data (that we will go over) is using the flat
file system. In this style, you can save a normal text file with data from your game
and load it later on. We will also discuss how to customize our file so that we can
have our own extension added to it. For our flat file system, we will save the player's
position as well as our statistics that we created earlier in this book. To start off,
we will need to create a new C# script and name it FLAT_Save_System.

Adding the required variables
Before we start adding our variables and other code, we need to make sure that we
have all the required using statements. Add these using statements to your code:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using System;
using System.IO;
using System.Text;

For this script, we will only need to create a few public variables; add these to
your script:

public string sFileName;
public string sDirectory;

public GameObject Player;

The first string will be the file that we will save and load from will be called, the
name should also include the extension. The next string is the directory that we will
save to and load from—for testing purposes and using the Desktop directory so that
we can easily find it later on. Our final variable, GameObject, is our player.

Time to save our file
Now, we will add the function that will allow us to save our flat file. To save our file,
we will use the code that we didn't discuss in this book before, as you can see from
our new using statements. Add this function to your script:

void WriteToFile(string file = "")
{
 if(file != "")

Chapter 7

[121]

 sFileName = file;

 if(File.Exists(sDirectory + sFileName))
 {
 DeleteFile(sFileName);
 }

 using(StreamWriter sw = new StreamWriter(sDirectory + sFileName))
 {
 sw.WriteLine(PlayerPrefs.GetInt("PlayerKills").ToString());
 sw.WriteLine(PlayerPrefs.GetInt("PlayerDeaths").ToString());
 sw.WriteLine(PlayerPrefs.GetInt("PlayerTotalGold").ToString());
 sw.WriteLine(PlayerPrefs.GetInt("PlayerCurrentGold").ToString());
 sw.WriteLine(PlayerPrefs.GetInt("PlayerGoldSpent").ToString());
 sw.WriteLine(PlayerPrefs.GetInt("PlayerLevel").ToString());
 sw.WriteLine(PlayerPrefs.GetInt("PlayerRoundsWon").ToString());
 sw.WriteLine(PlayerPrefs.GetInt("PlayerRoundsLost").ToString());
 sw.WriteLine(PlayerPrefs.GetFloat("PlayerKDR").ToString());
 sw.WriteLine(PlayerPrefs.GetFloat("PlayerWLR").ToString());
 sw.WriteLine(PlayerPrefs.GetFloat("PlayerTimePlayed").ToString());
 sw.WriteLine(Player.transform.position.x.ToString());
 sw.WriteLine(Player.transform.position.y.ToString());
 sw.WriteLine(Player.transform.position.z.ToString());
 }
}

This function takes in a string. We have set the string to a blank value; this will allow
us to call the function with or without sending the value. To start off the function, we
check whether the file has a value; if it does, then we will use it as our new filename.
If it does not, then we will continue to use the filename we previously set in our
public variable.

After this, we check whether our file already exists. If it does, we run a function
that will delete that file; we will create this function later on in this chapter.
We delete the file so that we don't have any issues with duplicate files or
incorrect filenames being made.

Next, we start the process of creating and saving our file. To do this, we use a
StreamWriter type. StreamWriter allows us to write data to a file. We use a basic
instance of StreamWriter, but the class also has other options that can expand upon
how you write your data.

Creating Save and Load Systems

[122]

To use StreamWriter, we set the path that we want to write to, or in this case,
the stream, and then add lines to that stream that will be written to our file. To add
lines to our file, we call the native WriteLine function from the StreamWriter class.
Within this call, we pass the variable that we want to save. For this instance, we grab
PlayerPrefs we had set earlier as well as the player's transform position.

Deleting our flat files
Next, we create a function that allows us to delete flat files. Add this function to
your script:

void DeleteFile(string file = "")
{
 File.Delete(sDirectory + file);
}

To delete a file, we use the Delete function within the File class. Before we delete
the file, we make sure that it actually exists using the Exists function within the
File class. The file that we are deleting is the one that is set to our directory and
filename variables.

Loading our flat files
For the final feature in our flat file system, we add the loading functionality.

Time to load our file
Now that we have created a way to save information to a flat file, we need to create a
way to load that information. To do this, we will use a similar process as the one that
we used to save the information. Let's add our final function to the script:

void ReadFile(string file = "")
{
 if(file != "")
 sFileName = file;

 using(StreamReader sr = new StreamReader(sDirectory + sFileName))
 {
 int kills = Convert.ToInt32(sr.ReadLine());
 int deaths = Convert.ToInt32(sr.ReadLine());

Chapter 7

[123]

 int totgold = Convert.ToInt32(sr.ReadLine());
 int curgold = Convert.ToInt32(sr.ReadLine());
 int level = Convert.ToInt32(sr.ReadLine());
 int rwon = Convert.ToInt32(sr.ReadLine());
 int rlost = Convert.ToInt32(sr.ReadLine());
 float pkdr = Convert.ToSingle(sr.ReadLine());
 float pwlr = Convert.ToSingle(sr.ReadLine());
 float ptime = Convert.ToSingle(sr.ReadLine());
 float x = Convert.ToSingle(sr.ReadLine());
 float y = Convert.ToSingle(sr.ReadLine());
 float z = Convert.ToSingle(sr.ReadLine());
 Player.transform.position = new Vector3(x, y, z);
 }
}

To load our data from the file, we will use StreamReader. StreamReader is very
similar to StreamWriter, except that it loads data from a file instead of writing to a file.
We pass the directory and filename that we want to load into our StreamReader class.
Next, we read each line using the ReadLine function within the StreamReader class.
For every line that we read, we can assign it to a variable, therefore loading the data.

The XML save system
The next method that we learn under data management is saving and loading from
an XML file. Saving and loading from an XML file allows you to get more details on
how you save your data. An XML file is made up of tagged lines that allow you to
load or save specific data for easier usage. Create a new C# script and name it
XML_Save_System. Before we write the code to save and load to XML, we need
to first create our XML files.

Creating our XML files
To create XML files, we use a program called Notepad++, a free-to-use text editor.
Notepad++ is a handy tool to have for situations like these; you can download
Notepad++ free of cost from http://notepad-plus-plus.org/.

When you open Notepad++, you should first select Language at the top of the screen
and select XML. This will set the current document to use the XML language.

http://notepad-plus-plus.org/

Creating Save and Load Systems

[124]

Next, we start adding our tags. First, we make the PlayerData XML file. Add these
lines so that your XML file looks like mine:

The first tag or node that we create is the pData tag, which will be our root node.
This will be used to anchor our data and other nodes. The rest of the nodes will be
what we save to and load our data from. The actual order of these nodes is irrelevant
as long as they're within the root node. Click on the Save button, and name this file
PlayerData. Be sure to click on the Save as type option below the filename and
select the XML option.

Next, we will create the EnemyData XML file. Open a new file in Notepad++,
and add these lines to your new XML file:

Chapter 7

[125]

As you can see in the preceding screenshot, this new XML file has a similar structure
to that of the PlayerData XML file. Our root node is eData, and after that, we have
an enemy node. The enemy node holds the rest of the nodes that we save to and load
from almost like a class or object. You can consider the enemy to be a class and the
child nodes within it as the class's properties. The reason we are doing this is to
save multiple enemies to our XML file, and they will each have their own data.

Finally, save this file in the same way you did the PlayerData XML file, but name this
one EnemyData. I have placed both of these files to the desktop for testing purposes.
Normally, you would keep your saved files in the same directory as your game or in
some hidden location.

Saving data with XML
Now, you will learn how to save to your XML files and use the nodes we created
within the XML files that we just created.

Adding the required variables
Before we start adding variables, we need to make sure that we have all the using
statements required. Add these to your script if you don't have them already:

using UnityEngine;
using System;
using System.Collections;
using System.Collections.Generic;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
using System.Text;

Next, we will add our variables to the script. For an XML-saving system, we will use
more variables than we did while using a flat file. This is because, to test our XML
system, we will save the player's transform data as well as the transform data for
multiple enemies. Add these variables to your script:

XmlDocument xPlayer = new XmlDocument();
XmlDocument xEnemy = new XmlDocument();
public string pFileName = "";
public string eFileName = "";
public GameObject Player;
public GameObject[] Enemies;

Creating Save and Load Systems

[126]

Our first two variables are XML documents; these variables hold the data from our
XML files in our computer. The next two strings hold the directory and filename with
the extension of the XML files that we are using. Finally, we have two GameObject
variables, with the first one being for our player and the other one being an array of
GameObjects to hold our enemies.

Saving the player data
Now, we will add the function we will call to save our player data. Add this function
to your script:

void SavePlayer()
{
 if(Player != null)
 {
 XmlNode root = xPlayer.FirstChild;

 foreach(XmlNode node in root.ChildNodes)
 {
 switch(node.Name)
 {
 case "xPos":
 node.InnerText = Player.transform.position.x.ToString();
 break;
 case "yPos":
 node.InnerText = Player.transform.position.y.ToString();
 break;
 case "zPos":
 node.InnerText = Player.transform.position.z.ToString();
 break;
 case "xRot":
 node.InnerText = Player.transform.rotation.x.ToString();
 break;
 case "yRot":
 node.InnerText = Player.transform.rotation.y.ToString();
 break;
 case "zRot":
 node.InnerText = Player.transform.rotation.z.ToString();
 break;
 case "xScale":
 node.InnerText = Player.transform.localScale.x.ToString();
 break;
 case "yScale":

Chapter 7

[127]

 node.InnerText = Player.transform.localScale.y.ToString();
 break;
 case "zScale":
 node.InnerText = Player.transform.localScale.z.ToString();
 break;
 }
 }
 xPlayer.Save(pFileName);
 }
}

When we call this function, we first check whether there is actually a GameObject in
our Player variable. If there isn't, then no saving will be done. Next, we declare an
XmlNode variable, which will be our root node from the XML document. After this,
we run a foreach loop that will find all of our child nodes within that root node.

To find specific nodes, we check the name property of that node, which actually is
what we typed to create that node. In the switch statement, we look for each node
that we want to save data to. For every node in XML, we set its InnerText value
to its associating value from our player's GameObject. The InnerText property of
a node is the data it holds and is what we will save to and load from.

Finally, we call the Save function from our xPlayer XmlDocument variable and pass
it to the directory and filename we set in our pFileName variable.

Saving the enemy data
We will add the function to save our enemy data. This function will look similar to
our function to save player data, except with a little more complication since we will
be intending this function to save for multiple enemies. Add this function to your
script now, just below the SavePlayer function:

void SaveEnemies()
{
 xEnemy.RemoveAll();

 XmlNode eRoot = xEnemy.CreateNode(XmlNodeType.Element, "eData", "");
 string[] nodes = {"name", "xPos", "yPos", "zPos", "xRot", "yRot",
"zRot", "xScale", "yScale", "zScale"};

 for(int e = 0; e < Enemies.Length; e++)
 {
 if(Enemies[e] != null)
 {

Creating Save and Load Systems

[128]

 XmlNode eBase = xEnemy.CreateNode(XmlNodeType.Element, "enemy",
"");

 for(int n = 0; n < nodes.Length; n++)
 {
 XmlNode newNode = xEnemy.CreateNode(XmlNodeType.Element,
nodes[n], "");

 eBase.AppendChild(newNode);
 }

 foreach(XmlNode node in eBase.ChildNodes)
 {
 switch(node.Name)
 {
 case "name":
 node.InnerText = Enemies[e].name;
 break;
 case "xPos":
 node.InnerText = Enemies[e].transform.position.x.ToString();
 break;
 case "yPos":
 node.InnerText = Enemies[e].transform.position.y.ToString();
 break;
 case "zPos":
 node.InnerText = Enemies[e].transform.position.z.ToString();
 break;
 case "xRot":
 node.InnerText = Enemies[e].transform.rotation.x.ToString();
 break;
 case "yRot":
 node.InnerText = Enemies[e].transform.rotation.y.ToString();
 break;
 case "zRot":
 node.InnerText = Enemies[e].transform.rotation.z.ToString();
 break;
 case "xScale":
 node.InnerText = Enemies[e].transform.
localScale.x.ToString();
 break;
 case "yScale":
 node.InnerText = Enemies[e].transform.
localScale.y.ToString();
 break;
 case "zScale":
 node.InnerText = Enemies[e].transform.
localScale.z.ToString();
 break;

Chapter 7

[129]

 }

 eRoot.AppendChild(eBase);
 }
 xEnemy.AppendChild(eRoot);
 }
 }
 xEnemy.Save(eFileName);
}

In the first line, we call the RemoveAll function from the xEnemy XmlDocument
variable. This deletes all of the nodes from the XML document. We do this for
simplicity's sake, this allows us to avoid the hassle of searching for specific enemy
nodes to save data from a specific enemy. Next, we create a couple of variables.
The first one will be our root node that holds all of our enemies. The next one is
a string array, which will hold the names of nodes we will use later on.

The next step in this function is to use a for loop to iterate through our enemies'
GameObject array; this is to check whether we actually have an enemy GameObject
in our array. If it runs into a null, it won't save any data for that spot.

Once we check to see that we don't have a null GameObject, we start creating our
XML data. First, we create a new XmlNode variable, which will be the root node
for our enemy data. Next, we run a for loop to create new nodes for each of the
variables that we want to save. We do this by creating a new node and setting its
name to one of the strings in our nodes string array. Finally, we append it as a
child to our enemy root node.

Now that we have created the enemy node and added all of the child nodes that we
want to save to, let's iterate through those nodes and start saving our data. To check
each node, we create a foreach loop like we did to save the player data and check
the names for each of the eBase child nodes.

After finding each of the specific nodes, we assign InnerText with the value
associating nodes with the current enemy GameObject. Once all the nodes have
been assigned, we append the eBase node to the root node. We do this process for
each of the GameObjects within the enemies' GameObject array, saving the data for
each of them.

Finally, to end the function, we call the Save function of our xEnemy XML document
and save the data to our EnemyData XML document.

Creating Save and Load Systems

[130]

Loading data with XML
Our final step in learning how to use XML is to load the data that we just saved to our
XML document into our game. While loading the XML data, you will notice that it's a
process similar to that of loading from a flat file. The real difference is that instead of
loading a line of data, we are loading from a specific part of the saved data.

Loading the player data
To load player data, we will add this function to your script just below the
SavePlayer function and above the SaveEnemies function:

void LoadPlayer()
{
 float xPos = 0.00f;
 float yPos = 0.00f;
 float zPos = 0.00f;
 float xRot = 0.00f;
 float yRot = 0.00f;
 float zRot = 0.00f;
 float xScale = 0.00f;
 float yScale = 0.00f;
 float zScale = 0.00f;

 if(Player != null)
 {
 XmlNode root = xPlayer.FirstChild;
 foreach(XmlNode node in root.ChildNodes)
 {
 switch(node.Name)
 {
 case "xPos":
 xPos = Convert.ToSingle(node.InnerText);
 break;
 case "yPos":
 yPos = Convert.ToSingle(node.InnerText);
 break;
 case "zPos":
 zPos = Convert.ToSingle(node.InnerText);
 break;
 case "xRot":

Chapter 7

[131]

 xRot = Convert.ToSingle(node.InnerText);
 break;
 case "yRot":
 yRot = Convert.ToSingle(node.InnerText);
 break;
 case "zRot":
 zRot = Convert.ToSingle(node.InnerText);
 break;
 case "xScale":
 xScale = Convert.ToSingle(node.InnerText);
 break;
 case "yScale":
 yScale = Convert.ToSingle(node.InnerText);
 break;
 case "zScale":
 zScale = Convert.ToSingle(node.InnerText);
 break;
 }
 }

 Player.transform.position = new Vector3(xPos, yPos, zPos);
 Player.transform.rotation = new Quaternion(xRot, yRot, zRot,
0.00f);
 Player.transform.localScale = new Vector3(xScale, yScale, zScale);
 }
}

Before we start loading our data, we need to create some placeholder variables for
our data. These will be used later on to load data from the XML document, then be
loaded into our player GameObject. Next, we check whether the player GameObject
isn't null as a fail-safe, then we start loading our data.

To load our data, we first create an XmlNode root from xPlayer XmlDocument.
Then, we run a foreach loop to look for every child node within the root node.
We then assign our placeholder variables we just created with the InnerText values
from each of the child nodes. Since a string can't be loaded into a float variable, we
use the Convert method to make the string into a float for the InnerText values.

Finally, after we load our data from the XML document into our placeholder variables,
we start assigning them to our player GameObject. We access the transform of the
player and assign the position, rotation, and scale to our new values.

Creating Save and Load Systems

[132]

Loading the enemy data
Now, we load our enemy data from our EnemyData XML document. This process
is similar to loading our player data, except that we will change the code slightly to
accommodate multiple GameObjects. Add the following function to your script now
just after the SaveEnemies function:

void LoadEnemies()
{
 string name = "";
 float xPos = 0.00f;
 float yPos = 0.00f;
 float zPos = 0.00f;
 float xRot = 0.00f;
 float yRot = 0.00f;
 float zRot = 0.00f;
 float xScale = 0.00f;
 float yScale = 0.00f;
 float zScale = 0.00f;

 for(int e = 0; e < Enemies.Length; e++)
 {
 if(Enemies[e] != null)
 {
 XmlNode eData = xEnemy.FirstChild;

 XmlNode enemy = eData.ChildNodes[e];

 if(enemy.Name == "enemy")
 {
 foreach(XmlNode eNode in enemy.ChildNodes)
 {
 switch(eNode.Name)
 {
 case "name":
 name = eNode.InnerText;
 break;
 case "xPos":
 xPos = Convert.ToSingle(eNode.InnerText);
 break;
 case "yPos":
 yPos = Convert.ToSingle(eNode.InnerText);
 break;

Chapter 7

[133]

 case "zPos":
 zPos = Convert.ToSingle(eNode.InnerText);
 break;
 case "xRot":
 xRot = Convert.ToSingle(eNode.InnerText);
 break;
 case "yRot":
 yRot = Convert.ToSingle(eNode.InnerText);
 break;
 case "zRot":
 zRot = Convert.ToSingle(eNode.InnerText);
 break;
 case "xScale":
 xScale = Convert.ToSingle(eNode.InnerText);
 break;
 case "yScale":
 yScale = Convert.ToSingle(eNode.InnerText);
 break;
 case "zScale":
 zScale = Convert.ToSingle(eNode.InnerText);
 break;
 }

 Enemies[e].name = name;
 Enemies[e].transform.localPosition = new Vector3(xPos, yPos,
zPos);
 Enemies[e].transform.localRotation = new Quaternion(xRot,
yRot, zRot, 0.00f);
 Enemies[e].transform.localScale = new Vector3(xScale,
yScale, zScale);
 }
 }
 }
 }
}

Just as we did to load player data, we create placeholder variables. Next, we use a
for loop to iterate through the enemies' GameObject array and then check to see
whether that GameObject is null or not. After this, we go through the process of
loading our data.

First, we create the root node and then create the enemy node; these will be the
same as those in the EnemyData XML. To assign the enemy node, we assign to the
current child node within the root node. We match the child node with the enemy
GameObject by using the same iterator from the for loop.

Creating Save and Load Systems

[134]

Next, we check whether the enemy node's name is enemy just to verify that we are
using the correct node. Then, we use a foreach loop to go through each node within
the child nodes of the enemy node. Next, we assign the placeholder variables to the
associating data from the nodes.

To finish loading our data, we assign each of the placeholder variables to our current
GameObject in the enemies' array. Our code will load the correct data for each of the
enemies and the data from the XML because we use the iterator from the first for
loop to choose the correct data from each of the arrays.

Creating the SaveHandler script
Now, we create a script that allows us to call the functions that we just created from
the preceding two scripts. First, we create a checkpoint system that saves game data
at specific points within the game. Then, we create a way to allow the player to save
their data whenever they want to. To get started, create a new script, and name it
SaveHandler.

The checkpoint system
The first way in which we create to save and load data is a checkpoint system.
Checkpoints are typically areas in the game world on reaching which the game
will save the player's data. Add this function to allow the checkpoint to save:

void OnTriggerEnter(Collider other)
{
 if(other.tag == "SavePoint")
 {
 Camera.main.SendMessage("WriteToFile");
 Destroy(other.gameObject);
 }
}

This is a trigger-based method to save. When the player enters the triggered area,
the game will save the player's data. Within the if statement, you can call any of the
save functions we created. You should take note that this function also destroys the
trigger object so that the player can't reactivate the checkpoint.

Chapter 7

[135]

The save anywhere-anytime system
To allow the player to save their data anywhere they want and anytime they want,
we add some kind of option for them to call it freely. This can be done by adding
to the menu a key or a button, or both, that the player presses. For this example, we
will let the player press keys on the keyboard to save and load. Add the following
function to create this functionality;

void Update()
{
 if(Input.GetKeyUp(KeyCode.F1))
 {
 Camera.main.SendMessage("SaveEnemies");
 }
 if(Input.GetKeyUp(KeyCode.F2))
 {
 Camera.main.SendMessage("LoadEnemies");
 }
}

When the player presses the F1 key, we call the SaveEnemies function from the XML
save system. If the player presses the F2 key, we call the LoadEnemies function from
the XML save system. With this functionality, the players can save their progress at
any time.

Playtesting
First let's create a test scene; create a new scene and name it Saving and Loading
Example. Within this scene, you have Main Camera, which we will use as our player.
We need two more GameObjects for our enemies. For the enemies, I created two
boxes and placed them randomly in the scene. I've named one of them Enemy1 and
the other Enemy2. Here's what my scene looks like:

Where you place the camera and enemy boxes doesn't matter. As long as you have
multiple objects to be your enemies, your test scene will be fine. Next, we will add
the scripts to Main Camera. First, we will add the Flat_Save_System script.

Creating Save and Load Systems

[136]

In the SFile Name field, type in the name of the file that you want to write to.
I've named mine PlayerData.txt. In the SDirectory field, type the directory you
want to save the file to for the desktop type in C:\Users\USERNAME\Desktop\.
Type your username on your computer in place of username. Finally, drag Main
Camera into the slot next to Player. Your inspector for that script should look
something like the following screenshot.

Now, we will add the XML_Save_System script to the camera; go ahead and drag it
over to get started. In the PFileName field, type in C:\Users\USERNAME\Desktop\
PlayerData.xml. Do the same for the EFileName field, except that you replace
PlayerData.xml with EnemyData.xml. Drag main camera in the slot next to Player.
In the Enemies dropdown, type in the number of enemies you have in your scene.
Finally, drag your enemy GameObjects into your Enemies array. This is what my
Inspector menu looks like:

Chapter 7

[137]

Finally, drag the SaveHandler script to Main Camera. We will now start testing.
Click on the Play button at the top, and once the scene has started, press the F1
key. Doing this will save the enemies' transform. Now click on the scene window,
and move your enemy GameObject to a different location, rotate them, and change
their size. Once you are done, press the F2 key. You will notice that the enemy
GameObjects will return to their original transform.

Your XML file looks something like the next screenshot. Your XML file might have
different values and possibly more enemies.

To test the flat file save system, open the SaveHandler script to change a couple
of values. In the Update function, where we check for input, instead of calling
SaveEnemies and LoadEnemies, call WriteToFile and ReadFile. When you test
the scene, again press F1 to save. On your desktop, you will see a new file called
PlayerData; open it and you should see several lines with numbers. These numbers
are the variables you saved from the game.

If you want to customize your flat file save type and not allow players to easily see
or edit the data, change the extension. Instead of saving it as .txt, save it as .save or
anything you want. If the player tries to open it, the computer won't know how to
open the file, but the game will still be able to use it.

Creating Save and Load Systems

[138]

Summary
In this chapter, you learned how to implement two save systems. You first learned
how to save to and load from a flat file. Next, you learned how to save to and load
from an XML document. We also went over how to use Notepad++ to create the
XML file.

In the next chapter, you will learn how to implement sound into the game. We will
go over the background music, atmospheric sounds and sound effects. We will also
make the music and atmospheric sounds in both random and playlist styles.

Aural Integration
In this chapter, you will learn about adding audio in our game in various ways.
Combining the usage of background music, atmospheric sounds, and event-driven
sound effects, you will have a game that feels very much alive. Audio plays a major
role in how players perceive the game world, and can be as important as graphics in
setting the mood of a scene.

In this chapter, you will learn about the following things:

• How to create a random music system
• How to create a playlist-styled music system
• How to integrate and manage atmospheric sounds
• How to create an event-driven sound effects system

Background music
The first part of audio that we will cover will be the background music.
Having music in your background can set the mood of a scene, keep the player
entertained on a subconscious level, or even be gameplay mechanics that the
player interacts with. We will create a dynamic system that will allow us to play
songs randomly or in a playlist style.

Creating a random system
The first step in creating our background music system will be to create a new
C# script and name it BG_Music_Manager. Before we start scripting, add the
using statement to the top of the script using the other using statements:

Using System.Collections.Generic;

Aural Integration

[140]

We will need the using statement so that we can use lists. Next, we will create a few
variables and add these to our script:

public List<AudioClip> SongList = new List<AudioClip>();
public float bgVolume = 1.00f;
public int curSong = 0;
public int ranMin, ranMax;
public bool playRandomly = false;

Our first variable is a list of audio clips, which we will use to hold the songs that we
want to play in our game. The next variable is float, which will determine how loud
our music is. The int variable after that will be used as an iterator for the playlist
system when we implement it. The next two integers will be used for our random
music system. Finally, the last variable we have is a Boolean value that we will set to
pick the system we want for our background music. Now, we will add the function
that will play a random song from our list:

void PlayRandom()
{
 if(!audio.isPlaying)
 {
 audio.clip = SongList[Random.Range(ranMin, ranMax)];
 audio.Play();
 }
}

Before we play a song, we check to see if there is a song playing currently. If there
is no song playing, we select a song and play it. To select a song, we grab one from
our AudioClip list randomly. To get the random number, we use the minimum and
maximum variables we created earlier and place them inside the Range function
of the Random class. Using this function will get us a random number between our
variables. Once we have a song assigned, we play it.

Adding a playlist system
Next, we will add our function that will run the playlist:

void Playlist()
{
 if(!audio.isPlaying)
 {
 if(curSong > SongList.Capacity)
 {
 curSong = 0;

Chapter 8

[141]

 }
 else
 {
 curSong++;
 }
 audio.clip = SongList[curSong];
 audio.Play();
 }
}

The first thing that we check for when running this function is if there is already
a song playing. If there is a song playing, the code will wait until the song stops;
if there is no song playing, our code gets executed. To execute the code, we use
the iterator variable that we created earlier; if the value is higher than the number
of songs we have, we reset it to zero.

If the value of the iterator variable is less than the number of songs we have,
then we iterate it and move on to selecting our song. To select the next song to be
played, we grab it from the AudioClip list and assign it to the clip property of
the GameObject's AudioSource component. Lastly, we call the Play function of
AudioSource to play the song.

Implementing the audio systems
Now that we have created our two systems to play music, we will need to finish
off our script with a few other features. First, we will create the Start and Update
functions as they will be needed for this script to work:

void Start()
{
 audio.volume = bgVolume;
 ranMax = SongList.Count;
}

void Update()
{
 if(playRandomly)
 PlayRandom();
 else
 Playlist();
}

Aural Integration

[142]

In the Start function, we assign the volume of AudioSource to our volume
variable. Next, we set the maximum value to the variable for our random function
to the amount of songs that we have in our list. In the Update function, we call the
functions that actually play the music. To do this, we check the bool variable that
we created earlier to decide which system to use.

An added feature we can place in our script will allow us to play a single song
repeatedly. Add this function to the script:

void PlayRepeat(AudioClip Song)
{
 audio.clip = Song;
 audio.loop = true;
 audio.Play();
}

This function will take the AudioClip value, which will be the song to be played.
Next, we assign the song to AudioSource, set its looping property to true, and
finally, play it.

The last feature that we will add to our script will allow us to change the speed of
the song by using the pitch property. Add this function to the script:

void ChangeSpeed(float Speed)
{
 if(Speed > 3)
 Speed = 3;

 if(Speed < -3)
 Speed = -3;

 audio.pitch = Speed;
}

This function takes a float variable, which will be used to determine the speed of
the song. The maximum speed value is 3, the minimum value is -3, and the default
value is 1. When the speed is changed with this function, we check to make sure that
the new value is within these boundaries. Once we check the value and it is correct,
we set the pitch of AudioSource to the new speed.

Chapter 8

[143]

Atmospheric sounds
Now, we will create a system to handle atmospheric sounds. Atmospheric sounds
are sound effects played in a game to give your scene more immersion. Some good
examples are wind blowing in a field, the sounds of drowned out chatter in a pub,
your character breathing hard after running for a while, and so on.

Creating the script and variables
To start off, we will need to create a new script and name it ATM_Manager.
Next, we will create a few variables needed to play our sounds:

public List<AudioClip> tmpList = new List<AudioClip>();
public List<string> keys = new List<string>();
public List<KeyValuePair<string, AudioClip>> atmList = new
List<KeyValuePair<string, AudioClip>>();
public float atmVolume = 1.00f;

The first three variables that we create are lists. The first of our lists is an AudioClip
list, which will hold the sound files that we will use. Next, we create a string list,
which we will fill with the name of the sound file that we want to call within our
code. The last list is a KeyValuePair list, which will put together the strings and
AudioClip variables we just created, and put them in a list that we will call within
our code. The last variable we create will be for the volume of the sounds.

Initializing the variables
To give a value to our list that we will use within the code, we will create a Start
function that initializes the list. Add this to your Start function:

void Start()
{
 audio.volume = atmVolume;
 int i = 0;
 atmList.Capacity = keys.Capacity;
 foreach(AudioClip ac in tmpList)
 {
 atmList.Add(new KeyValuePair<string, AudioClip>(keys[i], ac));
 i++;
 }
}

Aural Integration

[144]

First, we assign the volume of AudioSource to our volume variable. Next, we create
an iterator for what we will do next. To assign our internal list, we set its capacity
equal to the capacity of the string list. Next, we run a foreach loop to check for every
AudioClip within the temporary list that we created earlier. Finally, for each of the
audio clips, we add a new KeyValuPair item, which includes the name that we want
to call within the code, and the associating AudioClip to it.

Playing the atmospheric sounds
We will create two possible ways to play our atmospheric sounds. First, we will
allow the sound to play and have it loop, which would be helpful for a rain sound
effect or wind sound effect. Add this function to your script:

void PlayRepeat(string atmSong)
{
 for(int i = 0; i < atmList.Count; i++)
 {
 if(atmList[i].Key == atmSong)
 {
 audio.clip = atmList[i].Value;
 break;
 }
 }

 audio.loop = true;
 audio.Play();
}

This function takes a string. This string will be used to select the sound to be played.
A good example for this would be if you wanted to play a rain atmospheric sound,
you would have a key that is assigned as Rain in your KeyValuePair list and its
AudioClip value would be a rain sound file.

Within the PlayRepeat function, we use a for loop to iterate through the
KeyValuePair list. If one of the keys in the KeyValuePair list matches the string
passed to the PlayRepeat function, we assign the clip of the AudioSource to that
key's value, which would be an AudioClip. Lastly, we break the for loop, set the
AudioSource loop property to true, and play the sound.

Next, we will add a function that will allow us to play a sound that doesn't loop.
Add this function to the script:

void Play(string atmSong)
{
 for(int i = 0; i < atmList.Count; i++)

Chapter 8

[145]

 {
 if(atmList[i].Key == atmSong)
 {
 audio.clip = atmList[i].Value;
 break;
 }
 }

 audio.loop = false;
 audio.Play();
}

This function will run in the same way as the PlayRepeat function, except we aren't
setting the loop property of the AudioSource list. Since the loop property isn't being
set to true, the sound will only play once.

Sound effects
To play sound effects within our game, we will make an event-based system so that
playing the sound effects will be very easy. Sound effects are what bring your items,
events, and characters to life! They give your gun the loud bang you would expect,
the grunt from your character as they climb a wall, and the notification sound that
you get when you hover over an option in the menu. Sound effects add to the
immersion of your game and playing them can be very easy.

Creating the script and variables
Our first step in playing sound effects will be to create the C# script and name it
SFX_Manager. Next, we will need a few variables; add these to your script:

public float sfxVolume = 1.00f;
public AudioClip Run, Spell, Strike;
public GameObject RunSource;

The first variable should look familiar by now. We will use it for the volume.
Next, we create a few audio clips. For this chapter, we will use three specific
sound effects for testing purposes. The last variable is a GameObject that will
be used to play the running sound effect. Next, let's assign the volume of our
sound effects; add this to your Start function:

public void Start()
{
 audio.volume = sfxVolume;
}

Aural Integration

[146]

Now that we have the volume established, let's add the functions to play our sounds:

public void Run()
{
 if(!RunSource.audio.isPlaying)
 {
 RunSource.audio.clip = Run;
 RunSource.audio.Play();
 }
}

public void Spell()
{
 audio.clip = Spell;
 audio.Play();
}

public void Strike()
{
 audio.clip = Strike;
 audio.Play();
}

These functions will be the ones you will call to play a sound effect. To play the run
sound effect as a looping sound, we check to make sure that the sound has played
out before we play it again. This gives the illusion of a looping sound effect. To play
the rest of the sounds, we just assign the clip property and play it.

Playtesting
For playtesting, you will need to get a few assets from the Unity Asset Store for
the sound effects, background music, and atmospheric sounds. These are the ones
I recommend that you use for this example:

• Future Weapons Set:
https://www.assetstore.unity3d.com/en/#!/content/15644

• Footsteps Sounds Carpet Pack:
https://www.assetstore.unity3d.com/en/#!/content/2924

• The Fantasy Music Collection (Starter):
https://www.assetstore.unity3d.com/en/#!/content/15901

• The Combat Collection Starter Edition:
https://www.assetstore.unity3d.com/en/#!/content/7208

• Ambient Sample Pack:
https://www.assetstore.unity3d.com/en/#!/content/3765

https://www.assetstore.unity3d.com/en/#!/content/15644
https://www.assetstore.unity3d.com/en/#!/content/2924
https://www.assetstore.unity3d.com/en/#!/content/15901
https://www.assetstore.unity3d.com/en/#!/content/7208
https://www.assetstore.unity3d.com/en/#!/content/3765

Chapter 8

[147]

First, create an empty GameObject, name it RunningSource, and add an audio source
to it; this can be done by navigating to Add Component | Audio | AudioSource.
On the main camera, add AudioSource if there is none. Next, add the SFX_Manager
script to the camera. For its values, set the following:

• SFX volume to 1
• Run to footsteps_runcarpet_1
• Spell to shot_hand_gun
• Strike to whoosh_power_fist
• Run Source to the RunningSource GameObject

Now open the SFX_Manager script and add the Update function:

public void Update()
{
 if(Input.GetKey(KeyCode.W))
 pRun();

 if(Input.GetButtonUp("Fire1"))
 pStrike();

 if(Input.GetButtonUp("Fire2"))
 pSpell();
}

When you test the scene, you can click on the left mouse button to play the strike
sound effect. Clicking on the right mouse button will play the spell sound effect.
Then, finally, pressing the W key will play the running sound effect.

To playtest the atmospheric sounds, a new empty GameObject will need to be created;
name it AtmSource and be sure to add AudioSource and the ATM_Manager script to it
as well. Set the values of the script to the following:

• Tmp List size to 1
• Element 0 of Tmp List to RainLoop1 – 29 Seconds
• Keys size to 1
• Keys Element 0 to Rain
• Atm Volume to 0.75

Aural Integration

[148]

Lastly, add this line of code to the end of the Start function in the ATM_Manager script:

PlayRepeat(atmListt[0].Key);

Now, when you test the scene, you will hear the rain sound effect playing as
expected. The final part to test is the background music, which will be similar to the
way we tested the atmospheric sounds. First, create a new empty GameObject, name
it BGMusicSource, and add AudioSource and BG_Music_Manager to it. We will set
most of the script's values to their default values except these two:

• Song List size to 1
• Song List Element 0 to maintheme_1_the_combat_collection

Now, in the BG_Music_Manager script, add this line of code at the end of the
Start function:

PlayRepeat(SongList[0]);

When you test the scene now, you should hear everything that we added so far.
The background music and the atmospheric sound effect will play, and if you click
on the left mouse button or press the W key, your sound effects will play as well.

Summary
In this chapter, you learned how to play background music, sound effects, and
atmospheric sounds. To play background music we created two unique systems,
a random based system and a playlist styled system. Our atmospheric sounds are
easy to play as we used a key-based system to call and play sounds with ease.
We made a simple yet effective event-based system to play sound effects.

In the next chapter, we will go over the optimization of our game. We will cover how
to adjust the graphics, sound, lighting, and many more options to make our games
effective and smooth across all platforms.

Game Settings
In this chapter, we will be going over optimizations for our game. To optimize our
game, we'll add an Options menu that will create, save, and load configurations for
video and sound. By default, there are some settings given to us by Unity to allow
the player to choose what settings they want, but we will allow them to customize
their experience.

In this chapter, we'll cover the following topics:

• Creating video configurations
• Creating audio configurations
• Saving and loading custom settings
• Modifying Unity's native settings
• Creating an Options GUI
• Using PlayerPrefs to save settings

Figuring out what to optimize
In almost every video game, there is an Options menu with various aspects of
the game that you can modify. PC games tend to have the most customizations,
but console and handheld games can have many customizations as well. These
customizations are made possible by the developer to allow the player to edit how
the game outputs to their device and to improve the performance. The most common
practice is to make a few preset options available to the player to choose from with
varying quality of output. If a player doesn't have a high performance computer,
they may need to play the game on low settings, while a player with a great
computer can play on the highest settings. Another option is to allow the player
to modify different parts of the game output such as shadows or anti-aliasing.

Game Settings

[150]

Unity has its own quality settings with various effects on the game. We will be using
and editing these settings as well as allowing custom configuration.

Making video configurations
One of the first aspects of the game that we will be editing is the video configuration.
When it comes to performance, the video settings are perhaps the most important.
Changing something as simple as the shadows can greatly change how a player can
smoothly play the game. So let's get started by creating a new C# script and naming
it Video_Config.

Setting the values
Our first step in creating video configurations is to create a function that will set
a default value for the video settings. For this, we will set the video settings to
moderate values that aren't too low or too high. This will give the player a good
idea of what they need to modify if they need or want to modify anything:

public void SetDefaults()
{
 SetSettings("Medium");
 ToggleShadows(1);
 SetFOV(90.00f);
 SetResolution(0, 1);
 SetAA(2);
 SetVsync(1);
}

What this function does is call all of the functions that we create, which will
configure the video settings. The values that we send to each of the functions
are default settings that aren't too high or too low.

Toggling the shadows
The first video settings that will be affected are the shadows and how they render.
In Unity, there are three shadow settings: None, Hard, and Soft. For our game, we'll
just use the None and Hard settings. When we set the shadows to None, the shadows
will no longer be rendered. When the shadows are set to Hard, the shadows will have
a hard edge to them; they won't have a fading edge. In the next screenshot, you will
see the results of the effects that we used in our game. The image on the left shows
the Hard shadows and the image on the right shows the shadows turned off.

Chapter 9

[151]

Now that you've seen the resulting effects of our shadow options, let's code these
options. Add this function to your script:

public void ToggleShadows(int newToggle)
{
 Light[] lights = GameObject.FindObjectsOfType<Light>();

 foreach(Light light in lights)
 {
 if(newToggle == 0)
 light.shadows = LightShadows.None;
 else
 light.shadows = LightShadows.Hard;
 }
}

This function takes an int value, which will be used to toggle the shadows on or off.
Inside the function, we first grab all of the lights within the scene and assign them to
an array. Then, for each of the lights, we toggle their shadow's value to None or Hard.
This is how we turn the shadows on or off.

Setting the field of view
The field of view is a video setting that doesn't really affect performance that much,
but it is an option that many PC gamers like to modify. The field of view literally
means what it's called; it determines how big the view port is for the player to see
the game. It's measured by angle degrees and can also be measured vertically,
horizontally, or diagonally. Typically, the field of view is measured diagonally
for video games.

Game Settings

[152]

Add this function to your script:

public void SetFOV(float newFOV)
{
 Camera.main.fieldOfView = newFOV;
}

The way that cameras in Unity measure the field of view is by using a float variable.
So in the preceding function, we receive a float, which will be the new field of view.
To change the field of view, we find the main camera, access it's fieldofView
property, and assign it to the new field of the view variable.

Setting the resolution
Next, we'll allow the player to modify the resolution of the game as well as decide
whether the game will be full screen or windowed. Add this function to your script:

public void SetResolution(int Res, int Full)
{
 bool fs = Convert.ToBoolean(Full);

 switch(Res)
 {
 case 0:
 Screen.SetResolution(1920, 1080, fs);
 break;
 case 1:
 Screen.SetResolution(1600, 900, fs);
 break;
 case 2:
 Screen.SetResolution(1280, 1024, fs);
 break;
 case 3:
 Screen.SetResolution(1280, 800, fs);
 break;
 case 4:
 Screen.SetResolution(640, 400, fs);
 break;
 }
}

For this function, we receive two values. The first int value decides which
resolution we will use and the next int value determines whether the game will be
full screen or not. Inside the function, we create a bool variable, which will be used
to determine the fullscreen option. To use the int value we passed to the function,
we convert the int value to a Boolean by using the Convert function.

Chapter 9

[153]

Next, we use a switch statement to decide which resolution to set the game to.
Which resolutions you want your game to support is up to you, but you should
try to support various resolutions because everyone has their own preferences.
To set the resolution, we access the SetResolution function on the screen,
set the resolution values, and then set the fullscreen value.

Toggling the anti-aliasing property
The next video setting that we'll modify is the anti-aliasing property. Aliasing in a
game is where the models being rendered have jagged edges. Anti-aliasing is what
the game renderer does to smooth out those jagged edges. To do this, the renderer
will blur the edges slightly to make them smooth. This is one of the options that
will make your game look great, but will also slow down the performance.
Add this function to your script:

public void SetAA(int Samples)
{
 if(Samples == 0 || Samples == 2 || Samples == 4 || Samples == 8)
 QualitySettings.antiAliasing = Samples;
}

The way anti-aliasing works is that it will blur the edges by a number of samples.
If the number of samples is zero, no anti-aliasing will happen. So for this function,
we access the antiAliasing property of QualitySettings and set it to the int
value that we pass to the function.

Setting vsync
Vsync affects how the frames are rendered. With vsync on, the game will wait until
the frame has finished rendering before starting the next frame. With vsync off,
the game will start to render the next frame while the current frame is still being
rendered. The bonus of vsync being off is that the game will render faster but could
cause an effect called screen tear, which shows an obvious line on the screen caused
by the frames overlapping each other. Add this function to your script:

public void SetVsync(int Sync)
{
 QualitySettings.vSyncCount = Sync;
}

This function is very similar to the anti-aliasing function. We access the vSyncCount
property of QualitySettings and set it to the int value that we pass.

Game Settings

[154]

Changing the quality settings
The final video configuration that we'll edit will simply affect the native Unity
quality settings. This will be used to quickly change the overall quality settings
of the game. Add this function to the script:

public void SetSettings(string Name)
{
 switch(Name)
 {
 case "Low":
 QualitySettings.SetQualityLevel(0);
 break;
 case "Medium":
 QualitySettings.SetQualityLevel(1);
 break;
 case "High":
 QualitySettings.SetQualityLevel(2);
 break;
 }
}

For this function, we run a switch statement on the string that we passed
to determine the quality setting. To set the quality setting, we access the
SetQualityLevel function of QualitySettings and set it to the associating
quality level.

Loading the settings
The final function that we will add will allow us to load all of the settings
that we saved and set them in our game; this function will be used the most.
Add this function to the bottom of the script:

public void LoadAll()
{
 SetSettings(PlayerPrefs.GetString("Custom_Settings"));
 ToggleShadows(PlayerPrefs.GetInt("Custom_Shadows"));
 SetFOV(PlayerPrefs.GetFloat("Custom_FOV"));
 SetResolution(PlayerPrefs.GetInt("Custom_Resolution"), PlayerPrefs.
GetInt("Custom_Full"));
 SetAA(PlayerPrefs.GetInt("Custom_AA"));
 SetVsync(PlayerPrefs.GetInt("Custom_Sync"));
}

Chapter 9

[155]

In this function, we call each of the functions that we created and set them to the
saved values. Since we use PlayerPrefs to save our configurations, we get the
values from them.

Making audio configurations
For audio configurations, we'll set the volumes for background music, sound effects,
and the atmospheric sounds. We will also be setting the speaker mode for the audio
output. Let's start off by creating a new C# script and naming it Audio_Config.

Setting the values
The first function that we'll be creating will be used to set the default values for our
configurations. Add this function to the script:

public void SetDefaults()
{
 SetBG(1.00f);
 SetSFX(0.80f);
 SetAtm(0.60f);
 SetAudioType("Stereo");
}

In this function, we call the functions that we'll be creating next to set the default
values. For the first three functions, we set the volumes for various values. The last
function sets the speaker mode to a stereo default.

Configuring the volumes
Now, we'll be adding the functionality to change the volumes. Add these functions
to your script:

public void SetBG(float bgVolume)
{
 AudioSource[] audios = GameObject.FindObjectsOfType<AudioSource>();

 foreach(AudioSource source in audios)
 {
 source.volume = bgVolume;
 }
}

Game Settings

[156]

public void SetSFX(float sfxVolume)
{
 AudioSource[] audios = GameObject.FindObjectsOfType<AudioSource>();

 foreach(AudioSource source in audios)
 {
 source.volume = sfxVolume;
 }
}

public void SetAtm(float atmVolume)
{
 AudioSource[] audios = GameObject.FindObjectsOfType<AudioSource>();

 foreach(AudioSource source in audios)
 {
 source.volume = atmVolume;
 }
}

In each of the preceding functions, we pass a float variable, which will be the
new volume. Next, we create an array of audio sources, which we will grab from
the scene. Finally, for each of the audio sources, we assign its volume to the new
volume value of our passed variable.

Setting the speaker mode
Next, we'll set the speaker mode for the audio output. This will affect how the player
will hear your audio. A player who uses headphones might want to use surround
sound. A player who uses speakers to hear your game may want to use the stereo
sound instead. Add this function to the script:

public void SetAudioType(string SpeakerMode)
{
 switch(SpeakerMode)
 {
 case "Mono":
 AudioSettings.speakerMode = AudioSpeakerMode.Mono;
 break;
 case "Stereo":
 AudioSettings.speakerMode = AudioSpeakerMode.Stereo;
 break;
 case "Surround":
 AudioSettings.speakerMode = AudioSpeakerMode.Surround;

Chapter 9

[157]

 break;
 case "Surround 5.1":
 AudioSettings.speakerMode = AudioSpeakerMode.Mode5point1;
 break;
 case "Surround 7.1":
 AudioSettings.speakerMode = AudioSpeakerMode.Mode7point1;
 break;
 }
}

For this function, we pass a string, which will be used in a switch statement
to change the speaker mode. In this switch statement, we check for each of the
speaker modes that we want to support for our game. To change the speaker
mode, we assign the speakerMode variable from AudioSettings and assign
it to the associating speaker mode.

Creating the settings menu
The final part of our optimizations will be to add a menu so that the player can
access and change the settings we created. Create a new C# script and name it
Config_GUI.

Preparing the code
Now, we'll set up our code by adding variables, a start function, and an OnGUI
function. Add this code to your script:

float volBG, volSFX, volATM, fov;
bool aa, shadows, sync, optionsGUI, full;
int res;
string settings, audiotype;
public Rect optionsRect = new Rect(100, 100, 500, 500);

void Start()
{
 volBG = 0;
 volATM = 0.3f;
 volSFX = 0.8f;
 fov = 90.00f;
 aa = true;
 fullscreen = true;
 shadows = true;
 optionsGUI = true;
 LoadAll();

Game Settings

[158]

}

void OnGUI()
{
 if(optionsGUI)
 {
 optionsRect = GUI.Window(0, optionsRect, OptionsGUI, "Options");
 }
}

All of the variables that we created are placeholders so that we aren't directly
modifying the saved values that are in PlayerPrefs. The last variable, Rect,
will be used to place and size our Options menu. In the Start function, we
set the placeholders to some default values and call a LoadAll function. The
LoadAll function will be created later; its purpose is to load our saved data in
the placeholders. Finally, the OnGUI function will run the GUI window that will
hold our Options menu.

Creating the GUI
Now, we will create the function that runs the GUI. We will create labels, buttons,
horizontal sliders, and toggle buttons. Add this function to your script:

void OptionsGUI(int gui)
{
 GUILayout.BeginArea(new Rect(0, 50, 800, 800));

 GUI.Label(new Rect(25, 0, 100, 30), "Quality Settings");

 if(GUI.Button(new Rect(25, 20, 75, 20), "High"))
 GetComponent<Video_Config>().SetResolution(0, 3);
 if(GUI.Button(new Rect(100, 20, 75, 20), "Medium"))
 GetComponent<Video_Config>().SetResolution(1, 3);
 if(GUI.Button(new Rect(175, 20, 75, 20), "Low"))
 GetComponent<Video_Config>().SetResolution(2, 3);
 if(GUI.Button(new Rect(250, 20, 75, 20), "Custom"))
 GetComponent<Video_Config>().SetResolution(3, 3);

 GUI.Label(new Rect(25, 40, 100, 30), "Field of View");
 fov = GUI.HorizontalSlider(new Rect(115, 45, 100, 30), fov, 60.00f,
120.00f);

 GUI.Label(new Rect(25, 60, 100, 30), "Antialiasing");
 aa = GUI.Toggle(new Rect(115, 60, 100, 30), aa, " On/Off");

Chapter 9

[159]

 GUI.Label(new Rect(25, 75, 100, 30), "Resolution");

 if(GUI.Button(new Rect(25, 95, 75, 20), "1920x1080"))
 GetComponent<Video_Config>().SetResolution(0, 3);
 if(GUI.Button(new Rect(100, 95, 75, 20), "1600x900"))
 GetComponent<Video_Config>().SetResolution(1, 3);
 if(GUI.Button(new Rect(175, 95, 75, 20), "1280x1024"))
 GetComponent<Video_Config>().SetResolution(2, 3);
 if(GUI.Button(new Rect(250, 95, 75, 20), "1280x800"))
 GetComponent<Video_Config>().SetResolution(3, 3);
 if(GUI.Button(new Rect(325, 95, 75, 20), "640x400"))
 GetComponent<Video_Config>().SetResolution(4, 3);

 GUI.Label(new Rect(25, 125, 100, 30), "FullScreen");
 full = GUI.Toggle(new Rect(95, 125, 100, 30), fullscreen, " On/
Off");

For each option that we have, we make a block of code creating its label and buttons
for the player to see and adjust. The label is being used as a title for the option, so the
player knows what they are editing. The buttons are made available to change the
setting when they are clicked. Changing the fullscreen option is done with a toggle
button, which is a single button that can be turned on and off like a Boolean.

To adjust the field of view, we use a slider so that the player can scroll through
many options. Using the slider adds more customization as you don't need to
create buttons. A slider isn't ideal for all options, but it fits perfectly to adjust
the field of view. Now let's continue to create the other options:

 GUI.Label(new Rect(25, 140, 100, 30), "Shadows");
 shadows = GUI.Toggle(new Rect(95, 140, 100, 30), shadows, " On/
Off");

 GUI.Label(new Rect(25, 160, 150, 30), "Music Volume");
 volBG = GUI.HorizontalSlider(new Rect(25, 180, 100, 30), volBG,
0.00f, 1.00f);
 GUI.Label(new Rect(25, 200, 150, 30), "SFX Volume");
 volSFX = GUI.HorizontalSlider(new Rect(25, 220, 100, 30), volSFX,
0.00f, 1.00f);
 GUI.Label(new Rect(25, 240, 150, 30), "Atmospheric Volume");
 volATM = GUI.HorizontalSlider(new Rect(25, 260, 100, 30), volATM,
0.00f, 1.00f);

 GUI.Label(new Rect(25, 270, 100, 30), "Speaker Type");

 if(GUI.Button(new Rect(25, 290, 75, 20), "Mono"))

Game Settings

[160]

 GetComponent<Audio_Config>().SetAudioType("Mono");
 if(GUI.Button(new Rect(100, 290, 75, 20), "Stereo"))
 GetComponent<Audio_Config>().SetAudioType("Stereo");
 if(GUI.Button(new Rect(175, 290, 75, 20), "Surround"))
 GetComponent<Audio_Config>().SetAudioType("Surround");
 if(GUI.Button(new Rect(250, 290, 100, 20), "Surround 5.1"))
 GetComponent<Audio_Config>().SetAudioType("Surround 5.1");
 if(GUI.Button(new Rect(350, 290, 100, 20), "Surround 7.1"))
 GetComponent<Audio_Config>().SetAudioType("Surround 7.1");

 if(GUI.Button(new Rect(25, 350, 100, 20), "Save Settings"))
 SaveAll();
 GUI.Button(new Rect(150, 350, 100, 20), "Back");

 GUILayout.EndArea();
}

There is a lot going on in this function, but it's all GUI code. To change the Quality
Settings, Resolution, and Speaker Type parameters, we use buttons. When
clicked, the buttons will call their associating functions for either the video or
audio configuration scripts that we previously created.

To change the Field of View, Background Music volume, Sound Effects
volume, and Atmospheric volume parameters, we use a horizontal slider to edit
their values. For the Anti-aliasing, Fullscreen, and Shadows options, we use a
toggle or radio button to switch them on or off.

Finally, we create a button that will save the settings, and another button to go back.
The back button can be left open for now since it can be used to go back to the main
menu or a pause menu.

Saving all the values
To save our settings, we need to create a function for it; let's do that now. Add this
function to your script:

void SaveAll()
{
 PlayerPrefs.SetString("Custom_Settings", settings);

 if(shadows)
 PlayerPrefs.SetInt("Custom_Shadows", 1);
 else
 PlayerPrefs.SetInt("Custom_Shadows", 0);

Chapter 9

[161]

 PlayerPrefs.SetFloat("Custom_FOV", fov);

 PlayerPrefs.SetInt("Custom_Resolution", res);

 PlayerPrefs.SetInt("Custom_Full", Convert.ToInt32(fullscreen));

 if(aa)
 PlayerPrefs.SetInt("Custom_AA", 1);
 else
 PlayerPrefs.SetInt("Custom_AA", 0);

 if(sync)
 PlayerPrefs.SetInt("Custom_Sync", 1);
 else
 PlayerPrefs.SetInt("Custom_Sync", 0);

 PlayerPrefs.SetFloat("atmVolume", volBG);
 PlayerPrefs.SetFloat("sfxVolume", volSFX);
 PlayerPrefs.SetFloat("bgVolume", volATM);
 PlayerPrefs.SetString("audioType", audiotype);
}

What this function will do is use the PlayerPrefs function to save all of our values.
To save the settings, we use the placeholder variables that we created earlier.

Loading all the values
The last feature of the Config_GUI script will be to load all of our saved data.
Add this last function to your script:

void LoadAll()
{
 volBG = PlayerPrefs.GetFloat("bgVolume");
 volSFX = PlayerPrefs.GetFloat("sfxVolume");
 volATM = PlayerPrefs.GetFloat("atmVolume");
 fov = PlayerPrefs.GetFloat("Custom_FOV");
 aa = Convert.ToBoolean(PlayerPrefs.GetInt("Custom_AA"));
 shadows = Convert.ToBoolean(PlayerPrefs.GetInt("Custom_Shadows"));
 sync = Convert.ToBoolean(PlayerPrefs.GetInt("Custom_Sync"));
 fullscreen = Convert.ToBoolean(PlayerPrefs.GetInt("Custom_Full"));
 res = PlayerPrefs.GetInt("Custom_Resolution");
 settings = PlayerPrefs.GetString("Custom_Settings");
 audiotype = PlayerPrefs.GetString("audioType");
}

Game Settings

[162]

For each of the placeholder variables that we created, we load the saved data for it.
To get the saved data, we use the PlayerPrefs get functionality to load the values.

Playtesting
For playtesting, try to change all of the values, saving and loading them. To make
sure that the scripts work, just place all three scripts onto the same GameObject in
every scene you have. For the quality settings, you will need to modify the native
Quality settings in Unity. To do this, click on Edit, hover over Project Settings,
and click on Quality. An Inspector window should appear on the right-hand side.
Here, you will want to delete the default settings until there are three left, which
will be Low, Medium, and High. It should look like this now:

Chapter 9

[163]

Summary
In this chapter, you learned how to create and save custom settings for your
game. We created various settings for video as well as audio configurations.
We then finally created a GUI menu to allow the player to modify the settings
and optimize their game.

In the next chapter, we'll create a small game that will feature all of the gameplay
features that we created throughout this book. By doing this, you will get a great
example of how to implement everything you learned so far.

Putting It All Together
In this chapter, based on what you learned in the previous chapters, we will
create a small game. We won't be using everything, but will use most of what you
learned. This chapter will be a great exercise to help you learn how everything we
created works.

In this chapter, you will learn how to:

• Create a main menu
• Create a few playable levels
• Implement character interactions
• Use sound effects and music
• Use the save and load features you created
• Implement enemy AI

Creating levels
In the game, there will be three playable levels and a main menu. The main menu
will have three buttons on it: one to play the game, one for options, and a final one
to exit the game.

Putting It All Together

[166]

The main menu
Create a new scene and name it Main Menu. Next, drag the Audio_Config,
Video_Config, and Config_GUI scripts to the main camera. These will be used for our
Options menu. Next, create a new C# script, name it MainMenu, and add this code to it:

void OnGUI()
{
 if(GetComponent<Config_GUI>().optionsGUI == false)
 {
 if(GUI.Button(new Rect(700, 400, 150, 50), "Play Game"))
 Application.LoadLevel("Chapter 10_a");
 if(GUI.Button(new Rect(700, 475, 150, 50), "Options"))
 GetComponent<Config_GUI>().optionsGUI = true;
 if(GUI.Button(new Rect(700, 550, 150, 50), "Quit Game"))
 Application.Quit();
 }

 GetComponent<Config_GUI>().OnGUI();
}

For this script, all that you will need is the OnGUI function. This code will create
a few buttons that will be used to either play the game, show the options menu,
or exit the game. Save this script and drag it to the main camera as well. When you
run the scene, you should be able to see buttons similar to the ones shown in the
following screenshot:

Chapter 10

[167]

The playable level
We will create the level that we will play in. We will start off with creating just one
level; once we start playtesting, we will clone the scene to make them. To make this
simple, I'm using the scene from Chapter 5, Enemy and Friendly AIs and naming it
Chapter 10_a. Doing this will give us a playable environment, as well as an enemy.
Now, delete the main camera that is in the scene and drop in First Person Controller.

If you run the scene, you will see that the skeleton is tiny! This is because of its scale
when it is imported to the engine. In the SkeletonData folder, click on the skeleton
model. You will see the Inspector window open with the imported model data. In
the Scale Factor property, change its value to 0.0225; this should make the skeleton
look bigger. This value is the one that I am using, but feel free to use any value that
looks good to you and fits the scene.

Now we need to make a few GameObjects and prefabs. First, we will create a gun
for our player. Drop a cube primitive and scale it into a skinny rectangle. Move it
up to the camera and place it where a gun typically is in an FPS. In the Hierarchy
window, drag the Gun object and drop it on the main camera; this will force the
gun to rotate with the camera. This is what the gun looks like on my First Person
Controller object:

Next, drop a sphere; you can leave it as is, but I have put a material on it with a red
diffuse color. Now drop the itemSelf script on it. These are the values that I have
given to it:

• First Person Controller on the player slot
• Amount is set to 25
• Value is set to 30

Putting It All Together

[168]

• Armor Amount is set to 0
• Weight is set to 1
• Name is set to Potion
• Stat is set to Health
• Self Action is set to ChangeHP
• Self Type is set to Potion

Create a new prefab and name it Potion; now drop the sphere that you created on
the prefab. You now have a prefab for health potions! Place two of these onto the
map. Currently, you can't do anything with these potions, but later we will let the
player pick them up.

Creating player interactions
Here, we will create ways for the player to interact with the game world. For our
game, we will have the player shooting their gun, collecting potions, and pausing
the game as interactions. Create a new C# script and name it PlayerInteraction.
First, we will create a couple of variables and add them to our script:

public GameObject Projectile, Potion;

The Projectile GameObject will be the bullets that we shoot and the Potion
GameObject will be the potion prefab that we created earlier.

Shooting and pausing
We will create the functionality to shoot the gun and pause the game. Add this
Update function to your script:

void Update ()
{
if(Time.tmeScale != 0.00f)
{
 if(Input.GetButtonUp("Fire1"))
 Instantiate(Projectile, transform.position, transform.rotation);

 if(Input.GetButtonUp("Esc_Key"))
 {
 if(Time.timeScale != 0.00f)
 Time.timeScale = 0.00f;

Chapter 10

[169]

 else
 Time.timeScale = 1.00f;
 }
}
}

The first if statement will allow the player to shoot the projectile. To shoot it, we
instantiate the GameObject and the player's location and rotation. To let the player
pause the game, use an input that we created in Chapter 1, Interactive Input. Setting
the timeScale object to 0 will pause any script that uses the Update function, and
setting it to 1 will resume it.

Collecting potions
To collect potions, we will need to add a collision function, as follows:

void OnTriggerEnter(Collider other)
{
 if(other.tag == "Potion")
 {
 GetComponent<Inventory>().AddToInventory(1, Potion);

 for(int i = 0; i < GetComponent<GUI_2D>().Items.Count; i ++)
 {
 if(GetComponent<GUI_2D>().Items[i].name == "")
 GetComponent<GUI_2D>().Items[i] = Potion;
 break;
 }
 Destroy(other.gameObject);
 }
}

To collect the potion, we check the trigger's tag to make sure it is the potion.
Next, we add it to the inventory by calling the AddToInventory function of the
Inventory component, which we will be adding later. Also, we add it to the GUI
by calling the Items array from the GUI_2D component and assigning the potion.
Finally, we destroy the GameObject potion in the game world so that the player
can no longer get that potion.

Putting It All Together

[170]

Adding all the sounds
Now we will add the background music and atmospheric sounds.

Playing the background music
Create a new empty GameObject and name it Audio_Manager. Drag-and-drop the
BG_Music_Manager script on it. For this game, I will only use one song, so set the
size of the Song List to 1 and add a song. If the volume isn't already set, set it to 1
as well. Before you can move on, you need to add an Audio Source component
to this object. To do this, click on the Add Component button, click on the Audio
option, and finally click on the Audio Source option.

Adding the atmospheric sounds
Next, we will add the atmospheric sounds. To do this, we will use a similar process
as the background music. Create an empty GameObject and drag-and-drop the
ATM_Manager script on it. Set the size of TmpList to 2 and add two sound clips.
I am using Open Space Wind1 – 32 Seconds and Open Space Wind2 – 36 Seconds from
the sound clips we got in Chapter 8, Aural Integration. Set the Keys size to 2, then
set Element 0 to Wind1, and Element 1 to Wind2. If the volume isn't set, set it to
0.5. Finally, add an Audio Source component to this GameObject as well.

Implementing the GUI
Now, we will add the 2D GUI that we created in Chapter 2, GUI Time.

Adding the script
Drag-and-drop the GUI_2D script onto the First Person Controller. Since we already
have everything coded, your work is almost done for the GUI! In the scene, create
a new empty GameObject and name it Empty; this will be used by the script. If you
don't have default values for your GUI_2D script, set them to these values:

• Current HP to 100
• Max HP to 100
• Current Bar Length to 0
• Current Level to 1
• Max Experience to 100
• Current Experience to 0

Chapter 10

[171]

• Current Exp Bar Length to 0
• Max Exp Bar Length to 100

With all of this added, when you run the scene it should look like this:

Tracking stats
Now we will add the stat tracking feature that we created in Chapter 6, Keeping Score.

Adding the script
To allow stat tracking, we will simply drag the StatTracker script and drop it on
the main camera. Now, to show the menu for stats, we will need to add an Update
function. Add this to your script:

void Update()
{
 if(Input.GetKeyUp(KeyCode.E))
 {
 if(showStats)
 showStats = false;
 else
 showStats = true;
 }
}

Now when the player presses the E key, it will toggle the showStats Boolean
variable. The stats menu will only show when showStats is set to true.

Putting It All Together

[172]

Saving and loading
To let the player save and load data within our game, we will implement the save
system that we created in Chapter 7, Creating Save and Load Systems.

Adding the script
Drag the FLAT_Save_System script and drop it on the main camera. There will be
no default values for this script, so we will need to set them as follows:

• SfileName to Test.txt
• Sdirectory to C:\Users\USERNAME\Desktop\
• Drag-and-drop the First Person Controller onto the Player slot

Final preparations
Now, we will add our final features to make this game complete.

Adding win conditions
Right now, the game is playable, but there is no way to win! Let's change that by
creating a new empty GameObject and naming it RoundManager. Next, create a
new C# script, name it WinConditions, and add this code to the script:

public int Enemies;

void Start ()
{
 GameObject[] e = GameObject.FindGameObjectsWithTag("Enemy");
 Enemies = e.Length;
}

void Update ()
{
 if(Enemies <= 0)
 {
 if(Application.loadedLevel != 3)
 Application.LoadLevel(Application.loadedLevel + 1);
 else
 Application.LoadLevel(0);
 }
}

Chapter 10

[173]

What this script will do is get a count of how many enemies there are in the scene
and use that information to decide whether the player wins. In the Start function,
we grab the amount of enemies and assign it to the int variable we created. In the
Update function, we check that there are no more enemies left. In our game, when
you kill all the enemies you move on to the next level; if there are no levels left,
you return to the main menu.

Affecting the AI
In the AI_Agent script, we need to add these two lines of code to allow stat tracking
and, as we just created, a way to affect the win conditions. Add these two lines to the
ChangeHealth function just before you call the Destroy function:

Camera.main.GetComponent<StatTracker>().SetStat("Kills", 1);
GameObject.Find("RoundManager").GetComponent<WinConditions>().
Enemies--;

The first line will add to the Kills stat by 1, improving that stat. In the second line,
we decrease the number of enemies, bringing the player one step closer to victory.

Finalizing the items
Just as with the AI code, we will need to modify another script to get the potions to
work correctly. In the GUI_2D script, in the OnGUI function, replace the code for first
ItemButton with this code:

if(GUI.Button(ItemButtons[0], Items[0].name))
{
 if(Items[0].name == "Potion")
 {
 Items[0].GetComponent<itemSelf>().selfType = SelfType.Potion;
 Items[0].GetComponent<itemSelf>().selfAction = SelfAction.
ChangeHP;
 Items[0].GetComponent<itemSelf>().Amount = 25;
 }
}

This code now makes that GUI button usable and will call the correct functions to
use that potion.

Putting It All Together

[174]

Creating more levels
Now we come to the last step in making our game—making more levels! Since we
have everything we need in our game added to this scene, we can just duplicate this
scene and rename the new ones. I've duplicated the scene twice, naming one of them
Chapter10_b and the other Chapter 10_c.

Playtesting
Before you can playtest the game, you have one last step to do. Click on File and go
to Build Settings. You need to add all four of the scenes to the scenes in the Build
section. To do this, select all of the scenes we are using and drag them into the empty
section. It will look like this now:

Now you can build out an executable and play the game! When building on a PC,
you'll get an exe file along with a data folder; on a Mac, you'll get an app bundle.
The game will start from the main menu, then you will have to play the rest of the
levels to return to the main menu and beat the game.

Summary
Well, this is the end. This was the final chapter and it utilized all that we created in
the previous chapters. In this book, you learned how to make a GUI system, create
AI, create items, save and load game data, create a sound system, and much more.
Then, using what you learned, you were able to create a short game demonstrating
most of what we did throughout the book. Now is the time to move beyond this
book and create your own games.

Index
Symbols
2D UI

about 27
experience counter, creating 31, 32
GUI buttons, creating 28, 29
health bar, creating 29, 30
housing 28
level counter 30
scene, setting up 28

3D damage reports
creating 34

3D health bar
creating 33

3D name tags
creating 37, 38

3D UI
3D damage reports, creating 34
3D health bar, creating 33
3D name tags, creating 37
damage reports, completing 36
housing 32
new Update function 35, 36

A
achievements

all achievements, checking 113
checking for 112, 113
prototyping 104
resetting 105
specific achievement, checking 112

achievements onscreen
displaying 113
GUI functions, adding 113-117

achievement system
about 104
achievements, prototyping 104
achievements, resetting 105
achievement variables, adding 104

achievement trackers
about 105
gold spent, tracking 108
gold total, tracking 107
player kills, tracking 106
player's level, tracking 109
rounds won, tracking 110
time played, tracking 111

achievement variables
adding 104

actions
scripting 75-79

Active state 70
adding function

creating 57-59
Advanced options 83
AI

about 69
affecting 173
external actions 74
techniques 69

AI package
final coding touches 91
inspector, filling out 91-93
wrapping up 90

AI techniques
about 69
behavior tree form, of AI system 71, 72
finite state machines 70

[176]

Ambient Sample Pack
URL 146

animations
scripting 90

anti-aliasing property
toggling 153

armor changer, self item class 41
Artificial Intelligence. See AI
atmospheric sounds

about 143
adding 170
playing 144
script, creating 143
variables, creating 143
variables, initializing 143, 144

audio configurations
creating 155
speaker mode, setting 156, 157
values, setting 155
volumes, configuring 155, 156

audio systems
implementing 141, 142

B
background music

about 139
audio systems, implementing 141, 142
playing 170
playlist system, adding 140, 141
random system, creating 139, 140

behavior tree 70
behavior tree form, of AI system

about 71, 72
scripting 72-74
techniques, combining 72

bool variable 34, 102, 104, 152
Borderlands 52

C
character animations

about 87
animations, scripting 90
model mesh, importing 88-90

CheckAllAchievements function 113
checkpoint system 134

code, settings menu
preparing 157, 158

Color variable 34
Combat function 77
controller inputs

adding 7
controls

about 5
additional controller inputs, adding 7
customizing 15
directional pad inputs, adding 8
input manager, checking 6, 7
mapping 6
PC control inputs, adding 8
start button, adding 8
trigger inputs, adding 8
Xbox 360 Controller inputs, checking 7

control script
creating 9
formatting 9
function, adding for displaying

variables 12, 13
naming 9
setting up 9-11
variables, adding for each control 11, 12

Convert function 152
custom inputs

using 62
customization, controls

about 15
control inputs, cycling 19-22
control schemes, swapping 15-18
controls pop up, adding to GUI 22-24
controls, resetting 24
control switch button, adding to GUI 19
Reset function, adding 24
Reset input, adding 24

D
damage reports

completing 36
Damage variable 34
data

loading 172
saving 119, 172
script, adding 172

[177]

Delete function 122
DetectController function 10
device detector

creating 9
detection function, creating 10
identifier function, creating 10
variables, adding 9

directional pad inputs
adding 8

E
enemy data, XML

loading 132-134
saving 127-129

enemy stats
affecting 46
health changer 46
movement, adding 46, 47
triggers, detecting 47-49

enum 14
environment

setting up 80
environment, melee item class

interacting with 43
environment, setting up

navigation functions, scripting 85-87
NavMesh, creating 82-84
variables, adding 85

experience counter
creating 31, 32

external actions 74

F
field of view

setting 151, 152
final coding touches 91
final preparations, game

AI, affecting 173
items, finalizing 173
levels, creating 174
win conditions, adding 172, 173

finite state machines 70
flat files

deleting 122
loading 122, 123
required variables, adding 120

saving 120, 121
saving with 120

Footsteps Sounds Carpet Pack
URL 146

Future Weapons Set
URL 146

G
game

pausing 168, 169
potions, collecting 169
shooting 168, 169

game settings
optimization, figuring 149

GetJoystickNames function 10
gold spent, stats

tracking 108
Guard function 77
GUI

creating 158-160
displaying 62
GUI_2D script, adding 170, 171
implementing 170
running 62, 63
StatTracker script, adding 171

GUI_2D script
adding 170, 171

GUI buttons
creating 28, 29

GUI functions
adding 113-117

GUIStyle variable 30

H
health bar

creating 29, 30
health changer, melee item class 43
health changer, projectile item class 46
health changer, self item class 41

I
identifier function

creating 10
initializer

creating 56, 57

[178]

InnerText property 127
input manager

checking 6, 7
inspector

filling out 91-93
internal actions 74, 75
int variable 58, 60
inventory

accessing 52, 53
displaying 54, 61
features 51
items, adding to 57
items, removing from 59, 60
limits 52
organizing 53
testing 68

inventory script
creating 54
initializer, creating 56, 57
initializing 56
naming 54
necessary variables, adding 55, 56

inventory storage system
creating 51

isControllerConnected variable
using 12

item activator, self item class 41, 42
item bartering 53
item count modifications

item bartering 53
items, destroying 54
items, dropping 54
items, picking 54
items, using 54

items
adding 57, 66, 67
adding function, creating 57-59
adding, to inventory 57
destroying 54
dropping 54
finalizing 173
picking 54
removing 59, 67
removing, from inventory 59
removing function, creating 59, 60
using 54

L
level counter 30
levels

creating 165, 174
main menu 166
playable level 167, 168

M
main menu, levels 166
melee item class

about 42
player stats, modifying 43
variables, adding 42

MeleeType enum 42
model mesh

importing 88-90
movement, projectile item class

adding 46, 47

N
navigation functions

scripting 85-87
NavMesh

creating 82-84
NavMeshAgent object 85
Notepad++

URL 123

O
Off state 70
OnGUI function 12, 102, 113
On state 70

P
pathfinding

about 79
environment, setting up 80
paths creating, waypoint system used 80
Unity's NavMesh system 80

paths
creating, waypoint system used 80

[179]

PC and Xbox 360 Controller controls,
switching

about 13
control profiles, creating 14
GUI interaction function, adding 14
profile switching function, adding 14

PC control inputs
adding 8

pitch property 142
playable level 167, 168
player

prototype stats, assigning to 96
player data, XML

loading 130, 131
saving 126, 127

player interactions
creating 168
game, pausing 168, 169
game, shooting 168, 169

player kills
tracking 106

PlayerPrefs function 161
player's level

tracking 109
player stats

adding 40
subtracting 40

player stats, melee item class
environment, interacting with 43
health changer 43
triggers, detecting 44, 45

player stats, self item class
armor changer 41
health changer 41
item activator 41, 42

Play function 90, 141
playlist system

adding 140, 141
playtesting

about 25, 64, 93, 146-148, 162, 174
item, adding 66, 67
items, removing 67
test scene, creating 64-66

playtesting, item classes 49
playtesting, stats 118
playtesting, steps 38
playtesting, test scene 135-137

potions
collecting 169

prefs
resetting 99
saving 100

projectile item class
about 45
enemy stats, affecting 46
variables, adding 45

prototype stats
about 95
assigning, to player 96

Q
quality settings

changing 154
quick-select items

custom inputs, using 62
GUI, displaying 62
GUI, running 62, 63
inventory, displaying 61
setting 61

R
Radius property 83
random system

creating 139, 140
Rectangle variable 55
RemoveAll function 129
required variables, flat files

adding 120
required variables, XML

adding 125, 126
resolution

setting 152, 153
rounds won

tracking 110

S
save anywhere-anytime system 135
SaveHandler script

checkpoint system 134
creating 134
save anywhere-anytime system 135

[180]

scene
setting up 28

Scene filter 82
screen

stats, displaying on 102, 103
script

adding 172
script, atmospheric sounds

creating 143
scripting 72-74
script, sound effects

creating 145, 146
self item class

about 39
player stats, adding 40
player stats, subtracting 40
variables, adding 40

SetDefaultValues() function 15
SetNewKey function 24
settings menu

code, preparing 157, 158
creating 157
GUI, creating 158-160
values, loading 161
values, saving 160

settings, video configurations
loading 154, 155

shadows
toggling 150, 151

sound effects
about 145
script, creating 145, 146
variables, creating 145, 146

sounds
adding 170
atmospheric sounds, adding 170
background music, playing 170

speaker mode
setting 156, 157

specific achievement
checking 112

specific pref
resetting 101, 102
setting 100

Speed variable 47

start button
adding 8

stats
displaying, on screen 102, 103
resetting 98, 99
setting 97, 98
tracking 171

stat tracker
about 97
prefs, resetting 99
prefs, saving 100
specific pref, resetting 101, 102
specific pref, setting 100
stats, displaying on screen 102, 103
stats, resetting 98, 99
stats, setting 97, 98

StatTracker script
adding 171

Step Height property 83
SwitchControlScheme() function 18

T
techniques

combining 72
test scene

creating 64-66
TextMesh object 34
The Combat Collection Starter Edition

URL 146
The Fantasy Music Collection (Starter)

URL 146
time played

tracking 111
total gold, stats

tracking 107
Transform variable 33
trigger inputs

adding 8
triggers, melee item class

detecting 44, 45
triggers, projectile item class

detecting 47-49
txtColor variable 34

[181]

U
Unity's NavMesh system 80
using statement 55, 140

V
values, audio configurations

setting 155
values, settings menu

loading 161
saving 160

values, video configurations
setting 150

variables
adding 55, 56, 85
initializing 143, 144

variables, atmospheric sounds
creating 143

variables, melee item class
adding 42

variables, projectile item class
adding 45, 46

variables, self item class
adding 40

variables, sound effects
creating 145, 146

Vector3 variable 33
video configurations

anti-aliasing property, toggling 153
creating 150
field of view, setting 151, 152
quality settings, changing 154
resolution, setting 152, 153
settings, loading 154, 155
shadows, toggling 150, 151
values, setting 150
vsync, setting 153

volumes
configuring 155, 156

vsync
setting 153

W
waypoint system

used, for creating paths 80
win conditions

adding 172, 173

X
Xbox 360 Controller

about 5
inputs, checking 7

XML
enemy data, loading 132-134
enemy data, saving 127-129
loading with 130
player data, loading 130, 131
player data, saving 126, 127
required variables, adding 125, 126
saving with 125

XML files
creating 123-125

XML save system
about 123
XML files, creating 123-125

Thank you for buying
Unity Game Development Scripting

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning C# by Developing
Games with Unity 3D
Beginner's Guide
ISBN: 978-1-84969-658-6 Paperback: 292 pages

Learn the fundamentals of C# to create scripts for
your GameObjects

1. You've actually been creating scripts in your
mind your whole life, you just didn't realize
it. Apply this logical ability to write
Unity C# scripts.

2. Learn how to use the two primary building
blocks for writing scripts: the variable and
the method. They're not mysterious or
intimidating, just a simple form of substitution.

Getting Started with Unity
ISBN: 978-1-84969-584-8 Paperback: 170 pages

Learn how to use Unity by creating your very own
"Outbreak" survival game while developing your
essential skills

1. Use basic AI techniques to bring your game
to life.

2. Learn how to use Mecanim; create states and
manage them through scripting.

3. Use scripting to manage the graphical interface,
collisions, animations, persistent data,
or transitions between scenes.

Please check www.PacktPub.com for information on our titles

Unity 4.x Game AI Programming
ISBN: 978-1-84969-340-0 Paperback: 232 pages

Learn and implement game AI in Unity3D with a lot
of sample projects and next-generation techniques to
use in your Unity3D projects

1. A practical guide with step-by-step instructions
and example projects to learn Unity3D
scripting.

2. Learn pathfinding using A* algorithms as well
as Unity3D pro features and navigation graphs.

3. Implement finite state machines (FSMs),
path following, and steering algorithms.

Unity 4.x Cookbook
ISBN: 978-1-84969-042-3 Paperback: 386 pages

Over 100 recipes to spice up your Unity skills

1. A wide range of topics are covered, ranging
in complexity, offering something for every
Unity 4 game developer.

2. Every recipe provides step-by-step instructions,
followed by an explanation of how it all works,
and alternative approaches or refinements.

3. Book developed with the latest version
of Unity (4.x).

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Interactive Input
	Picking the controls
	Mapping the needed controls
	Checking the input manager
	Checking the Xbox 360 Controller inputs
	Adding additional controller inputs
	Adding a start button and trigger inputs
	Adding directional pad inputs
	Adding PC control inputs

	Housing our control script
	Creating and naming the script
	Formatting the script

	Creating the device detector
	Adding the variables needed
	Creating the detection function
	Creating the identifier function

	Let's get set and show them
	Adding variables for each control
	Adding a function to display the variables

	Let's switch!
	Creating control profiles
	Adding a profile switching function
	Adding the GUI interaction function

	Customization is key
	Swapping control schemes
	Adding a control switch button to the GUI
	Cycling control inputs
	Adding the controls pop up to the GUI
	Resetting the controls
	Adding the Reset function
	Adding the Reset input

	Playtesting
	Summary

	Chapter 2: GUI Time
	A traditional 2D UI
	Setting up our scene
	Housing our 2D UI
	Creating GUI buttons
	Creating a health bar
	Level counter
	Creating an experience counter

	Housing our 3D UI
	Creating a 3D health bar
	Creating 3D damage reports
	The new Update function
	Completing the damage reports
	Creating 3D name tags

	Summary

	Chapter 3: Expandable Item Classes
	The self item class
	Adding our variables
	Buff or debuff stats
	The health changer
	The armor changer
	The item activator

	The melee item class
	Adding our variables
	Buff or debuff stats
	The health changer
	Let's interact with the environment
	Detecting triggers

	The projectile item class
	Adding our variables
	Buff or debuff stats
	The health changer
	Adding movement
	Detecting triggers

	Playtesting
	Summary

	Chapter 4: Inventory
	Features of an inventory
	Limits of the inventory
	Accessing the inventory
	Organizing an inventory

	Item count modifications
	Item bartering
	Dropping and picking up items
	Destroying and using items

	Displaying the inventory
	Creating the inventory script
	Creating and naming the script
	Adding the necessary variables
	Initializing our inventory
	Creating the initializer

	Adding items
	Let's figure this out
	Creating the adding function

	Removing items
	Let's figure this out
	Creating the removing function

	Setting the quick-select items
	Setting the quick-select items quickly
	Let's display the inventory
	Using our custom inputs
	Displaying the GUI
	Running the GUI

	Playtesting
	Creating a test scene
	Let's add an item
	Let's remove some items

	Other things to try out
	Summary

	Chapter 5: Enemy and Friendly AIs
	AI techniques
	Finite state machines
	The behavior tree form of the AI system
	Combining the techniques
	Let's start scripting!

	Internal and external actions
	External actions
	Internal actions
	Scripting the actions

	Pathfinding
	Creating paths using the waypoint system
	Unity's NavMesh system
	Setting up the environment
	Creating the NavMesh
	Adding our variables
	Scripting the navigation functions

	Character animations
	Importing the model mesh
	Scripting the animations

	Putting it all together
	Final coding touches
	Filling out the inspector

	Playtesting
	Summary

	Chapter 6: Keeping Score
	Prototype stats
	Assigning the stats to the player

	The stat tracker
	Setting the stats
	Resetting the stats
	Resetting all of our prefs
	Saving all of our prefs
	Setting a specific pref
	Resetting a specific pref
	Showing our stats on the screen

	The achievement system
	Prototyping the achievements
	Adding the required achievement variables
	Resetting the achievements

	Achievement trackers
	Tracking the kills
	Tracking the gold total
	Tracking the gold spent
	Tracking the player's level
	Tracking the rounds won
	Tracking the time played

	Let's check the achievements
	Checking a specific achievement
	Checking all of the achievements

	Displaying the achievements on screen
	Adding the GUI functions

	Playtesting
	Summary

	Chapter 7: Creating Save and Load Systems
	Saving data with flat files
	Adding the required variables
	Time to save our file

	Deleting our flat files
	Loading our flat files
	Time to load our file

	The XML save system
	Creating our XML files

	Saving data with XML
	Adding the required variables
	Saving the player data
	Saving the enemy data

	Loading data with XML
	Loading the player data
	Loading the enemy data

	Creating the SaveHandler script
	The checkpoint system
	The save anywhere-anytime system

	Playtesting
	Summary

	Chapter 8: Aural Integration
	Background music
	Creating a random system
	Adding a playlist system
	Implementing the audio systems

	Atmospheric sounds
	Creating the script and variables
	Initializing the variables
	Playing the atmospheric sounds

	Sound effects
	Creating the script and variables

	Playtesting
	Summary

	Chapter 9: Game Settings
	Figuring out what to optimize
	Making video configurations
	Setting the values
	Toggling the shadows
	Setting the field of view
	Setting the resolution
	Toggling the anti-aliasing property
	Setting vsync
	Changing the quality settings
	Loading the settings

	Making audio configurations
	Setting the values
	Configuring the volumes
	Setting the speaker mode

	Creating the settings menu
	Preparing the code
	Creating the GUI
	Saving all the values
	Loading all the values

	Playtesting
	Summary

	Chapter 10�: Putting It All Together
	Creating levels
	The main menu
	The playable level

	Creating player interactions
	Shooting and pausing
	Collecting potions

	Adding all the sounds
	Playing the background music
	Adding the atmospheric sounds

	Implementing the GUI
	Adding the script

	Tracking stats
	Adding the script

	Saving and loading
	Adding the script

	Final preparations
	Adding win conditions
	Affecting the AI
	Finalizing the items
	Creating more levels

	Playtesting
	Summary

	Index

